School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
Surgical A Ward, Khyber Teaching Hospital, Peshawar, Pakistan.
PLoS One. 2023 Mar 13;18(3):e0281860. doi: 10.1371/journal.pone.0281860. eCollection 2023.
Drug delivery via aerosolization for localized and systemic effect is a non-invasive approach to achieving pulmonary targeting. The aim of this study was to prepare spray-dried proliposome (SDP) powder formulations to produce carrier particles for superior aerosolization performance, assessed via a next generation impactor (NGI) in combination with a dry powder inhaler. SDP powder formulations (F1-F10) were prepared using a spray dryer, employing five different types of lactose carriers (Lactose monohydrate (LMH), lactose microfine (LMF), lactose 003, lactose 220 and lactose 300) and two different dispersion media. The first dispersion medium was comprised of water and ethanol (50:50% v/v ratio), and the second dispersion medium comprised wholly of ethanol (100%). In the first dispersion medium, the lipid phase (consisting of Soya phosphatidylcholine (SPC as phospholipid) and Beclomethasone dipropionate (BDP; model drug) were dissolved in ethanol and the lactose carrier in water, followed by spray drying. Whereas in second dispersion medium, the lipid phase and lactose carrier were dispersed in ethanol only, post spray drying. SDP powder formulations (F1-F5) possessed significantly smaller particles (2.89 ± 1.24-4.48 ± 1.20 μm), when compared to SDP F6-F10 formulations (10.63 ± 3.71-19.27 ± 4.98 μm), irrespective of lactose carrier type via SEM (scanning electron microscopy). Crystallinity of the F6-F10 and amorphicity of F1-F15 formulations were confirmed by XRD (X-ray diffraction). Differences in size and crystallinity were further reflected in production yield, where significantly higher production yield was obtained for F1-F5 (74.87 ± 4.28-87.32 ± 2.42%) then F6-F10 formulations (40.08 ± 5.714-54.98 ± 5.82%), irrespective of carrier type. Negligible differences were noted in terms of entrapment efficiency, when comparing F1-F5 SDP formulations (94.67 ± 8.41-96.35 ± 7.93) to F6-F10 formulations (78.16 ± 9.35-82.95 ± 9.62). Moreover, formulations F1-F5 demonstrated significantly higher fine particle fraction (FPF), fine particle dose (FPD) and respirable fraction (RF) (on average of 30.35%, 890.12 μg and 85.90%) when compared to counterpart SDP powder formulations (F6-F10). This study has demonstrated that when a combination of water and ethanol was employed as dispersion medium (formulations F1-F5), superior formulation properties for pulmonary drug delivery were observed, irrespective of carrier type employed.
通过雾化输送药物以实现局部和全身效果是一种非侵入性的方法,可实现肺部靶向。本研究旨在制备喷雾干燥前体脂质体(SDP)粉末制剂,以生产具有优异雾化性能的载体颗粒,通过下一代撞击器(NGI)结合干粉吸入器进行评估。使用喷雾干燥器制备 SDP 粉末制剂(F1-F10),使用五种不同类型的乳糖载体(一水乳糖(LMH)、乳糖微粉(LMF)、乳糖 003、乳糖 220 和乳糖 300)和两种不同的分散介质。第一种分散介质由水和乙醇(50:50%v/v 比例)组成,第二种分散介质完全由乙醇组成(100%)。在第一种分散介质中,脂质相(由大豆磷脂酰胆碱(SPC 作为磷脂)和倍氯米松二丙酸酯(BDP;模型药物)组成)溶解在乙醇中,乳糖载体溶解在水中,然后进行喷雾干燥。而在第二种分散介质中,脂质相和乳糖载体仅在喷雾干燥后在乙醇中分散。通过 SEM(扫描电子显微镜)观察,与 SDP F6-F10 制剂(10.63±3.71-19.27±4.98μm)相比,SDP 粉末制剂(F1-F5)具有更小的颗粒(2.89±1.24-4.48±1.20μm),与乳糖载体类型无关。F6-F10 和 F1-F15 制剂的结晶度通过 XRD(X 射线衍射)得到确认。通过 SEM(扫描电子显微镜)观察,与 SDP F6-F10 制剂(10.63±3.71-19.27±4.98μm)相比,SDP 粉末制剂(F1-F5)具有更小的颗粒(2.89±1.24-4.48±1.20μm),与乳糖载体类型无关。F6-F10 和 F1-F15 制剂的结晶度通过 XRD(X 射线衍射)得到确认。通过 SEM(扫描电子显微镜)观察,与 SDP F6-F10 制剂(10.63±3.71-19.27±4.98μm)相比,SDP 粉末制剂(F1-F5)具有更小的颗粒(2.89±1.24-4.48±1.20μm),与乳糖载体类型无关。大小和结晶度的差异进一步反映在生产收率上,F1-F5(74.87±4.28-87.32±2.42%)的生产收率明显高于 F6-F10 制剂(40.08±5.714-54.98±5.82%),与载体类型无关。与 F6-F10 制剂(78.16±9.35-82.95±9.62)相比,F1-F5 SDP 制剂(94.67±8.41-96.35±7.93)的包封效率差异不大。此外,与 F6-F10 制剂相比,F1-F5 制剂的细颗粒分数(FPF)、细颗粒剂量(FPD)和可呼吸分数(RF)显著更高(平均 30.35%、890.12μg 和 85.90%)。这项研究表明,当水和乙醇的混合物用作分散介质(制剂 F1-F5)时,无论所使用的载体类型如何,都可以观察到用于肺部药物输送的优异制剂特性。