Elkanayati Rasha M, Karnik Indrajeet, Uttreja Prateek, Narala Nagarjuna, Vemula Sateesh Kumar, Karry Krizia, Repka Michael A
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
BASF Corporation, Pharma Solutions, Tarrytown, NY 10591, USA.
Pharmaceutics. 2024 Dec 23;16(12):1630. doi: 10.3390/pharmaceutics16121630.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR). The solid dispersions were characterized using modulated differential scanning calorimetry (M-DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FTIR). Dissolution studies compared the developed formulations against a marketed product. The SIM-SOP/KIR blend showed the highest solubility (34 µg/mL), achieving an approximately 5.5-fold enhancement over the pure drug. Dissolution studies showed that SIM-SOP/KIR formulations had significantly higher release profiles than the physical mixture (PM) and pure drug ( < 0.01). Additionally, their release was similar to a marketed formulation, with 100% drug release within 30 min. In contrast, the SIM-K12/KIR formulation exhibited strong miscibility, but limited solubility and slower release rates, suggesting that high miscibility does not necessarily correlate with improved solubility. This study demonstrates the effectiveness of TSMG, and HME as effective continuous manufacturing technologies for improving the therapeutic efficacy of poorly water-soluble drugs. It also emphasizes the complexity of polymer-drug interactions and the necessity of carefully selecting compatible polymers to optimize the quality and performance of pharmaceutical formulations.
本研究评估了双螺杆熔融制粒(TSMG)和热熔挤出(HME)技术在提高辛伐他汀(SIM)溶解度和溶出度方面的效果,辛伐他汀是一种水溶性差、生物利用度低的药物。此外,该研究还探讨了二元聚合物共混物对药物混溶性、溶解度和体外释放曲线的影响。以30%的药物负载量和二元聚合物共混物1:1的比例,使用包括尤特奇(SOP)、聚维酮K12(K12)、共聚维酮(KVA)和聚丙烯酸树脂(KIR)等各种聚合物组合对辛伐他汀进行加工。使用调制差示扫描量热法(M-DSC)、粉末X射线衍射(PXRD)和傅里叶变换红外光谱(FTIR)对固体分散体进行表征。溶出度研究将所开发的制剂与市售产品进行了比较。SIM-SOP/KIR共混物显示出最高的溶解度(34µg/mL),比纯药物提高了约5.5倍。溶出度研究表明,SIM-SOP/KIR制剂的释放曲线显著高于物理混合物(PM)和纯药物(<0.01)。此外,它们的释放与市售制剂相似,在30分钟内药物释放率达100%。相比之下,SIM-K12/KIR制剂表现出很强的混溶性,但溶解度有限且释放速率较慢,这表明高混溶性不一定与溶解度的提高相关。本研究证明了TSMG和HME作为提高水溶性差的药物治疗效果的有效连续制造技术的有效性。它还强调了聚合物-药物相互作用的复杂性以及仔细选择相容聚合物以优化药物制剂质量和性能的必要性。