文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚乳酸长丝水分含量对3D打印过程中粉尘排放的影响

The Influence of Polylactic Acid Filament Moisture Content on Dust Emissions in 3D Printing Process.

作者信息

Karwasz Anna, Osiński Filip, Kaczmarek Weronika, Furmaniak Kacper, Rojek Izabela

机构信息

Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 60-138 Poznań, Poland.

Faculty of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

出版信息

Sensors (Basel). 2024 Dec 10;24(24):7890. doi: 10.3390/s24247890.


DOI:10.3390/s24247890
PMID:39771629
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11678983/
Abstract

This paper presents the results of a study on the effect of moisture content in polylactic acid (PLA) filaments on dust emissions during incremental manufacturing. The tests were conducted in a customised chamber using a standard 3D printer, and Plantower PMS3003 sensors were used to monitor air quality by measuring PM1, PM2.5 and PM10 concentrations. The filament humidity levels tested were 0.18%, 0.61% and 0.83%. The results show that a higher moisture content in the filament significantly increases dust emissions. For dry filaments (0.18% humidity), the average dust emissions ranged from 159 to 378 µg/m. Slightly humid filaments (0.61%) produced higher emissions, with averages between 59 and 905 µg/m, with one outlier reaching up to 1610 µg/m. For very humid filaments (0.83%), the highest average emissions were observed, ranging from 57 to 325 µg/m, along with greater variability (standard deviation up to 198). These findings highlight that increased filament humidity correlates with elevated dust emissions and greater instability in emission levels, raising potential health concerns during 3D printing.

摘要

本文介绍了一项关于聚乳酸(PLA)长丝含水量对增材制造过程中粉尘排放影响的研究结果。测试在一个定制的腔室内使用标准3D打印机进行,并使用Plantower PMS3003传感器通过测量PM1、PM2.5和PM10浓度来监测空气质量。测试的长丝湿度水平分别为0.18%、0.61%和0.83%。结果表明,长丝中较高的含水量会显著增加粉尘排放。对于干燥的长丝(湿度为0.18%),平均粉尘排放量在159至378微克/立方米之间。湿度稍高的长丝(0.61%)产生的排放量更高,平均值在59至905微克/立方米之间,有一个异常值高达1610微克/立方米。对于湿度非常高的长丝(0.83%),观察到最高的平均排放量,范围在57至325微克/立方米之间,并且变化性更大(标准偏差高达198)。这些发现突出表明,长丝湿度增加与粉尘排放升高以及排放水平的更大不稳定性相关,这在3D打印过程中引发了潜在的健康问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/999df9239f62/sensors-24-07890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/8dd7403583f7/sensors-24-07890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/2fb9e19dde39/sensors-24-07890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/dc60f714077c/sensors-24-07890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/f054f126bfba/sensors-24-07890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/8630e0c1d98b/sensors-24-07890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/ebd0b5cc12c9/sensors-24-07890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/1fb82a61a64d/sensors-24-07890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/30bee05b3cd0/sensors-24-07890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/7d0b6004b969/sensors-24-07890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/4a0cbe7174a3/sensors-24-07890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/5f212f8bbbce/sensors-24-07890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/999df9239f62/sensors-24-07890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/8dd7403583f7/sensors-24-07890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/2fb9e19dde39/sensors-24-07890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/dc60f714077c/sensors-24-07890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/f054f126bfba/sensors-24-07890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/8630e0c1d98b/sensors-24-07890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/ebd0b5cc12c9/sensors-24-07890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/1fb82a61a64d/sensors-24-07890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/30bee05b3cd0/sensors-24-07890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/7d0b6004b969/sensors-24-07890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/4a0cbe7174a3/sensors-24-07890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/5f212f8bbbce/sensors-24-07890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0728/11678983/999df9239f62/sensors-24-07890-g012.jpg

相似文献

[1]
The Influence of Polylactic Acid Filament Moisture Content on Dust Emissions in 3D Printing Process.

Sensors (Basel). 2024-12-10

[2]
Volatile organic compound and particulate emissions from the production and use of thermoplastic biocomposite 3D printing filaments.

J Occup Environ Hyg. 2022-6

[3]
Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells.

Toxics. 2024-1-13

[4]
Systematic ranking of filaments regarding their particulate emissions during fused filament fabrication 3D printing by means of a proposed standard test method.

Indoor Air. 2022-3

[5]
Influence of polymer additives on gas-phase emissions from 3D printer filaments.

Chemosphere. 2021-9

[6]
3D printer emissions elicit filament-specific and dose-dependent metabolic and genotoxic effects in human airway epithelial cells.

Front Public Health. 2024

[7]
Lung cell toxicological effects of 3D printer aerosolized filament byproducts.

Environ Sci Pollut Res Int. 2025-2

[8]
Unlocking the nanoparticle emission potential: a study of varied filaments in 3D printing.

Environ Sci Pollut Res Int. 2024-5

[9]
The Analysis of 3D Printer Dust for Forensic Applications,

J Forensic Sci. 2020-9

[10]
Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.

J Occup Environ Hyg. 2016

本文引用的文献

[1]
The Influence of Moisture Absorption and Desorption by the ABS Filament on the Properties of Additively Manufactured Parts Using the Fused Deposition Modeling Method.

Materials (Basel). 2024-4-25

[2]
Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: An overview and commentary.

ADMET DMPK. 2023-1-1

[3]
The Natural Moisture of ABS Filament and Its Influence on the Quality of FFF Products.

Materials (Basel). 2023-1-19

[4]
Evaluation of formaldehyde, particulate matters 2.5 and 10 emitted to a 3D printing workspace based on ventilation.

Sci Rep. 2022-12-14

[5]
Real-time monitoring of the emission of volatile organic compounds from polylactide 3D printing filaments.

Sci Total Environ. 2022-1-20

[6]
State of the art in additive manufacturing and its possible chemical and particle hazards-review.

Indoor Air. 2021-11

[7]
Paper-based optoelectronic nose for identification of indoor air pollution caused by 3D printing thermoplastic filaments.

Anal Chim Acta. 2021-1-25

[8]
Evaluation of emissions and exposures at workplaces using desktop 3-dimensional printer.

J Chem Health Saf. 2019-3

[9]
3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach.

Micromachines (Basel). 2019-11-28

[10]
The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments.

Sci Total Environ. 2019-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索