Suppr超能文献

使用新型超宽带对数周期天线在各种杂波环境中生成合成成像雷达数据。

Synthetic Imaging Radar Data Generation in Various Clutter Environments Using Novel UWB Log-Periodic Antenna.

作者信息

Trivedi Deepmala, Phartiyal Gopal Singh, Kumar Ajeet, Singh Dharmendra

机构信息

Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Sensors (Basel). 2024 Dec 11;24(24):7903. doi: 10.3390/s24247903.

Abstract

In short-range microwave imaging, the collection of data in real environments for the purpose of developing techniques for target detection is very cumbersome. Simultaneously, to develop effective and efficient AI/ML-based techniques for target detection, a sufficiently large dataset is required. Therefore, to complement labor-intensive and tedious experimental data collected in a real cluttered environment, synthetic data generation via cost-efficient electromagnetic wave propagation simulations is explored in this article. To obtain realistic synthetic data, a 3-D model of an antenna, instead of a point source, is used to include the coupling effects between the antenna and the environment. A novel printed scalable ultra-wide band (UWB) log-periodic antenna with a tapered feed line is designed and incorporated in simulation models. The proposed antenna has a highly directional radiation pattern with considerable high gain (more than 6 dBi) on the entire bandwidth. Synthetic data are generated for two different applications, namely through-the-wall imaging (TWI) and through-the-foliage imaging (TFI). After the generation of synthetic data, clutter removal techniques are also explored, and results are analyzed in different scenarios. Post-analysis shows evidence that the proposed UWB log-periodic antenna-based synthetic imagery is suitable for use as an alternative dataset for TWI and TFI application development, especially in training machine learning models.

摘要

在短程微波成像中,为了开发目标检测技术而在实际环境中收集数据非常繁琐。同时,为了开发有效且高效的基于人工智能/机器学习的目标检测技术,需要一个足够大的数据集。因此,为了补充在实际杂乱环境中收集的劳动密集型且繁琐的实验数据,本文探索了通过经济高效的电磁波传播模拟来生成合成数据。为了获得逼真的合成数据,使用天线的三维模型而非点源来纳入天线与环境之间的耦合效应。设计了一种带有渐变馈线的新型印刷可扩展超宽带(UWB)对数周期天线,并将其纳入模拟模型。所提出的天线具有高度定向的辐射方向图,在整个带宽上具有相当高的增益(超过6 dBi)。针对两种不同的应用生成合成数据,即穿墙成像(TWI)和穿叶成像(TFI)。在生成合成数据之后,还探索了杂波去除技术,并在不同场景下对结果进行了分析。分析后表明,所提出的基于超宽带对数周期天线的合成图像适用于作为穿墙成像和穿叶成像应用开发的替代数据集,特别是在训练机器学习模型方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e17d/11679389/d768d676b673/sensors-24-07903-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验