Hao Mingrui, Yuan Xiaoming, Ren Jie, Bi Yueqi, Ji Xiaodong, Zhao Sihai, Wu Miao, Shen Yang
Campus School of Mechanical and Electrical Engineering, China University of Mining and Technology Beijing, Beijing 100083, China.
China Coal Technology & Engineering Group Taiyuan Research Institute Co., Ltd., Taiyuan 030006, China.
Sensors (Basel). 2024 Dec 12;24(24):7935. doi: 10.3390/s24247935.
In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation. This paper proposes an integrated odometry-based method to improve position estimation and mitigate location ambiguities for simultaneous localization and mapping (SLAM) in large-scale, GNSS-denied, and perceptually degraded subterranean transport roadway scenarios. Additionally, this paper analyzes the robot dynamic model and presents a nonlinear control strategy for the robot to autonomously track a planned trajectory based on the path-following error dynamic model. Finally, the proposed algorithm and control strategy are tested and validated both in a virtual transport roadway environment and in an active underground coal mine. The test results indicate that the proposed algorithm can obtain more accurate and robust robot odometry and better large-scale underground roadway mapping results compared with other SLAM solutions.
针对目前煤矿井下辅助运输系统自动化水平落后、劳动强度大、事故率高的现状,本文提出了一种矿用无轨辅助运输机器人(MTATBOT)。MTATBOT是专门为长距离、空间受限且防爆的煤矿井下环境设计的。借助车载感知和自动驾驶系统,MTATBOT能够实现井下物料的自动化无人运输。本文提出了一种基于里程计的集成方法,以改进位置估计并减轻在大规模、无全球导航卫星系统(GNSS)信号以及感知退化的井下运输巷道场景中的同时定位与地图构建(SLAM)中的位置模糊性。此外,本文分析了机器人动力学模型,并基于路径跟踪误差动力学模型提出了一种非线性控制策略,使机器人能够自主跟踪规划轨迹。最后,在虚拟运输巷道环境和实际煤矿井下对所提出的算法和控制策略进行了测试与验证。测试结果表明,与其他SLAM解决方案相比,所提出的算法能够获得更准确、更稳健的机器人里程计以及更好的大规模井下巷道地图构建结果。