Suppr超能文献

用于肌肉疲劳分析的表面肌电图和自我感知疲劳水平综合数据集。

A Comprehensive Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Analysis.

作者信息

Cerqueira Sara M, Vilas Boas Rita, Figueiredo Joana, Santos Cristina P

机构信息

Center for MicroElectroMechanical Systems (CMEMS), University of Minho, 4805-017 Guimarães, Portugal.

LABBELS-Associate Laboratory, 4805-017 Guimarães, Portugal.

出版信息

Sensors (Basel). 2024 Dec 18;24(24):8081. doi: 10.3390/s24248081.

Abstract

Muscle fatigue is a risk factor for injuries in athletes and workers. This brings relevance to the study of this biochemical process to allow for its identification and prevention. This paper presents a novel dataset for muscle fatigue analysis comprising surface electromyography data from upper-limbs and the subject's self-perceived fatigue level. This dataset contains 13 h and 20 min of data from 13 participants performing a total of 12 upper-limb dynamic movements (8 uni-articular and 4 complex/compound). This dataset may contribute to the testing of new fatigue detection algorithms and analysis of the underlying mechanisms.

摘要

肌肉疲劳是运动员和工人受伤的一个风险因素。这使得对这一生物化学过程的研究具有重要意义,以便能够识别和预防它。本文提出了一个用于肌肉疲劳分析的新数据集,该数据集包含上肢表面肌电图数据以及受试者自我感知的疲劳程度。该数据集包含13名参与者总共12种上肢动态运动(8种单关节运动和4种复杂/复合运动)的13小时20分钟的数据。这个数据集可能有助于新的疲劳检测算法的测试以及对潜在机制的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e9b/11678945/0fa09e4b41e0/sensors-24-08081-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验