Platero-Horcajadas Manuel, Pardo-Pina Sofia, Cámara-Zapata José-María, Brenes-Carranza José-Antonio, Ferrández-Pastor Francisco-Javier
Informática Industrial y Redes de Computadores (I2RC), University of Alicante, 03690 Alicante, Spain.
Centro de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO), Miguel Hernandez University, 03312 Orihuela, Spain.
Sensors (Basel). 2024 Dec 19;24(24):8109. doi: 10.3390/s24248109.
Automated systems, regulated by algorithmic protocols and predefined set-points for feedback control, require the oversight and fine tuning of skilled technicians. This necessity is particularly pronounced in automated greenhouses, where optimal environmental conditions depend on the specialized knowledge of dedicated technicians, emphasizing the need for expert involvement during installation and maintenance. To address these challenges, this study proposes the integration of data acquisition technologies using Internet of Things (IoT) protocols and optimization services via reinforcement learning (RL) methodologies. The proposed model was tested in an industrial production greenhouse for the cultivation of industrial hemp, applying adapted strategies to the crop, and was guided by an agronomic technician knowledgeable about the plant. The expertise of this technician was crucial in transferring the RL model to a real-world automated greenhouse equipped with IoT technology. The study concludes that the integration of IoT and RL technologies is effective, validating the model's ability to manage and optimize greenhouse operations efficiently and adapt to different types of crops. Moreover, this integration not only enhances operational efficiency but also reduces the need for constant human intervention, thereby minimizing labor costs and increasing scalability for larger agricultural enterprises. Furthermore, the RL-based control has demonstrated its ability to maintain selected temperatures and achieve energy savings compared to classical control methods.
由算法协议和用于反馈控制的预定义设定点调节的自动化系统,需要熟练技术人员的监督和微调。这种必要性在自动化温室中尤为明显,在那里最佳环境条件取决于专业技术人员的专业知识,这突出了在安装和维护期间专家参与的必要性。为应对这些挑战,本研究提出使用物联网(IoT)协议集成数据采集技术,并通过强化学习(RL)方法进行优化服务。所提出的模型在一个用于种植工业大麻的工业生产温室中进行了测试,对作物应用了适应性策略,并由一位了解该植物的农艺技术人员指导。这位技术人员的专业知识对于将强化学习模型转移到配备物联网技术的实际自动化温室至关重要。该研究得出结论,物联网和强化学习技术的集成是有效的,验证了该模型有效管理和优化温室运营并适应不同作物类型的能力。此外,这种集成不仅提高了运营效率,还减少了持续人工干预的需求,从而将劳动力成本降至最低,并提高了大型农业企业的可扩展性。此外,与传统控制方法相比,基于强化学习的控制已证明其能够维持选定温度并实现节能。