Suppr超能文献

用于液相色谱×液相色谱-高分辨质谱中可疑物筛查的信号处理工作流程:使用质量过滤算法从复杂样品中高效提取纯质谱图以鉴定可疑物

Signal Processing Workflow for Suspect Screening in LC × LC-HRMS: Efficient Extraction of Pure Mass Spectra for Identification of Suspects in Complex Samples Using a Mass Filtering Algorithm.

作者信息

Schneide Paul-Albert, Munk Kronik Oskar

机构信息

Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.

Department of Analytical Science, BASF SE, 67056 Ludwigshafen am Rhein, Germany.

出版信息

Anal Chem. 2025 Jan 21;97(2):1180-1189. doi: 10.1021/acs.analchem.4c04288. Epub 2025 Jan 7.

Abstract

The data processing workflows for comprehensive two-dimensional liquid chromatography (LC × LC) hyphenated to high-resolution mass spectrometry (HRMS) operated in data-independent acquisition (DIA) are limited compared to their one-dimensional counterparts. A two-step workflow is proposed to extract pure mass spectra from LC × LC-HRMS. First, a mass filtering (MF) algorithm groups ions belonging to the same compound based on their elution profile similarity in the first (D) and second dimension (D). Second, the filtered data are deconvoluted using multivariate curve resolution (MCR) to address potential coelution. The presented workflow is termed MF + MCR and was tested on pulsed elution-LC × LC-HRMS data from a wastewater effluent extract. The proposed workflow was benchmarked to the following three data processing strategies for mass spectra extraction: peak apex (PAM), using the MF approach alone, or using MCR without prior MF. The MF + MCR workflow identified 25 suspect compounds, compared to 23, 16, and 10 identified by MF, MCR, and PAM, respectively. The nine suspects that could not be identified using MCR compared to the MF + MCR all had low total signal contributions, i.e., low intensities compared to the TIC. This showed that adequate preprocessing prior to MCR is essential for trace level analysis. Additionally, it was shown that the MF + MCR workflow extracted statistically significantly purer mass spectra compared to PAM (-value: 0.003) and MCR (-value: 0.04) from a spiked blank sample. The results highlight that by utilizing the elution profiles in both chromatographic dimensions, clean mass spectra of analytes at trace levels measured in DIA can be extracted, allowing for more reliable compound identification compared to the workflows that were used for benchmarking.

摘要

与一维液相色谱-高分辨率质谱联用的数据处理工作流程相比,全二维液相色谱(LC×LC)与高分辨率质谱(HRMS)联用并采用数据非依赖采集(DIA)模式的数据处理工作流程较为有限。本文提出了一种两步工作流程,用于从LC×LC-HRMS中提取纯质谱图。首先,质量过滤(MF)算法根据离子在第一维(D1)和第二维(D2)中的洗脱曲线相似性,将属于同一化合物的离子分组。其次,使用多元曲线分辨(MCR)对过滤后的数据进行去卷积,以解决潜在的共洗脱问题。所提出的工作流程称为MF+MCR,并在来自废水流出物提取物的脉冲洗脱-LC×LC-HRMS数据上进行了测试。将所提出的工作流程与以下三种质谱图提取的数据处理策略进行了基准测试:峰顶点(PAM)、单独使用MF方法或在没有先验MF的情况下使用MCR。MF+MCR工作流程鉴定出25种可疑化合物,相比之下,MF、MCR和PAM分别鉴定出23种、16种和10种。与MF+MCR相比,使用MCR无法鉴定出的9种可疑物的总信号贡献都很低,即与总离子流(TIC)相比强度较低。这表明在MCR之前进行充分的预处理对于痕量水平分析至关重要。此外,结果表明,与来自加标空白样品的PAM(p值:0.003)和MCR(p值:0.04)相比,MF+MCR工作流程提取的质谱图在统计学上明显更纯。结果突出表明,通过利用两个色谱维度中的洗脱曲线,可以提取在DIA中测量的痕量分析物的纯净质谱图,与用于基准测试的工作流程相比,能够实现更可靠的化合物鉴定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验