Kalita Surajit, Danovich David, Shaik Sason
Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
J Am Chem Soc. 2025 Jan 22;147(3):2626-2641. doi: 10.1021/jacs.4c14791. Epub 2025 Jan 8.
Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided. In contrast, . The present study provides insights into these results by modeling the decomposition modes that transpire under both field types. Additionally, this study provides insights into the frequency effects on the decomposition processes within the THz-MHz regions. The simulation shows that the Os-EEF in the lower frequency range (≤GHz) decomposes the plaque on a time scale of ∼50 ns, whereas the higher frequency Os-EEFs (≥THz) are less effective. As such, Os-EEFs with moderate-to-low frequencies (≤GHz) lead to an "explosion," whereby the peptides fly distantly apart and inhibit plaque reformation. By contrast, St-EEFs form parallel peptide pairs, which are stabilized by the EEF due to the large dipole moment of the ensemble. Thus, St-EEF applications lead to sluggish and reversible plaque decomposition processes. We further conclude that the Os-EEF impact is maximal for short pulses, which prevents the EEF propensity to arrange the peptides in parallel pairs. The superiority of the Os-EEF over the St-EEF is maintained irrespective of the peptides' length. A model is formulated that predicts the dependence of the decomposition time scale on the EEF.
我们最近对在振荡和静态外部电场(Os - EEFs和St - EEFs)下分解阿尔茨海默病斑块进行的分子动力学模拟表明,Os - EEF在分解由7个残基肽段组成的斑块方面具有优越性。现在,通过研究短肽二聚体和全长Aβ - 42肽三聚体,这一结论得到了进一步强化。因此,在施加St - EEF后获得的分散肽段,一旦St - EEF消退,就会重新形成斑块。相比之下, 。本研究通过对两种电场类型下发生的分解模式进行建模,深入了解了这些结果。此外,本研究还深入探讨了太赫兹 - 兆赫兹区域内频率对分解过程的影响。模拟结果表明,较低频率范围(≤GHz)的Os - EEF在约50纳秒的时间尺度上分解斑块,而较高频率的Os - EEFs(≥THz)效果较差。因此,中低频(≤GHz)的Os - EEF会导致一种“爆炸”现象,即肽段远距离飞散,从而抑制斑块重新形成。相比之下,St - EEF会形成平行肽对,由于整体的大偶极矩,这些肽对会被EEF稳定。因此,施加St - EEF会导致缓慢且可逆的斑块分解过程。我们进一步得出结论,对于短脉冲,Os - EEF的影响最大,这阻止了EEF将肽段排列成平行对的倾向。无论肽段长度如何,Os - EEF相对于St - EEF的优越性都得以保持。我们构建了一个模型,该模型预测了分解时间尺度对EEF的依赖性。