Lin Chengrui, Zhang Huichun
Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.
Environ Sci Technol. 2025 Jan 21;59(2):1253-1263. doi: 10.1021/acs.est.4c11282. Epub 2025 Jan 7.
Polymers are widely produced and contribute significantly to environmental pollution due to their low recycling rates and persistence in natural environments. Biodegradable polymers, while promising for reducing environmental impact, account for less than 2% of total polymer production. To expand the availability of biodegradable polymers, research has explored structure-biodegradability relationships, yet most studies focus on specific polymers, necessitating further exploration across diverse polymers. This study addresses this gap by curating an extensive aerobic biodegradation data set of 74 polymers and 1779 data points drawn from both published literature and 28 sets of original experiments. We then conducted a meta-analysis to evaluate the effects of experimental conditions, polymer structure, and the combined impact of polymer structure and properties on biodegradation. Next, we developed a machine learning model to predict polymer biodegradation in aquatic environments. The model achieved an score of 0.66 using Morgan fingerprints, detailed experimental conditions, and thermal decomposition temperature () as the input descriptors. The model's robustness was supported by a feature importance analysis, revealing that substructure R-O-R in polyethers and polysaccharides positively influenced biodegradation, while molecular weight, , substructure -OC(═O)- in polyesters and polyalkylene carbonates, side chains, and aromatic rings negatively impacted it. Additionally, validation against the meta-analysis findings confirmed that predictions for unseen test sets aligned with established empirical biodegradation knowledge. This study not only expands our understanding across diverse polymers but also offers a valuable tool for designing environmentally friendly polymers.
聚合物产量巨大,由于其低回收率以及在自然环境中的持久性,对环境污染有重大影响。可生物降解聚合物虽有望减少对环境的影响,但其产量占聚合物总产量不到2%。为扩大可生物降解聚合物的可得性,研究探索了结构与生物降解性的关系,但大多数研究聚焦于特定聚合物,因此需要对多种聚合物进行进一步探索。本研究通过整理一个广泛的好氧生物降解数据集来填补这一空白,该数据集包含74种聚合物和1779个数据点,数据来源于已发表文献和28组原始实验。然后我们进行了荟萃分析,以评估实验条件、聚合物结构以及聚合物结构与性能的综合影响对生物降解的作用。接下来,我们开发了一个机器学习模型来预测聚合物在水生环境中的生物降解情况。该模型使用摩根指纹、详细的实验条件和热分解温度()作为输入描述符,得分达到0.66。特征重要性分析支持了该模型的稳健性,结果表明聚醚和多糖中的亚结构R-O-R对生物降解有积极影响,而分子量、聚酯和聚碳酸亚烷基酯中的亚结构-OC(═O)-、侧链和芳香环对生物降解有负面影响。此外,根据荟萃分析结果进行的验证证实,对未见测试集的预测与已确立的经验性生物降解知识相符。本研究不仅扩展了我们对多种聚合物的理解,还为设计环境友好型聚合物提供了一个有价值的工具。