Chavez Carolina, Lin Kelly, Malveaux Alexis, Gorin Aleksandr, Brizuela Stefanie, Cheng Quen J, Hoffmann Alexander
Molecular and Medical Pharmacology PhD Program, UCLA, Los Angeles, CA, USA.
Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA.
Sci Signal. 2025 Jan 7;18(868):eado8860. doi: 10.1126/scisignal.ado8860.
Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers. We found that LPS-activated IRF3 mediated de novo enhancer formation indirectly by activating the type I interferon (IFN)-induced ISGF3. However, ISGF3 was generally needed to collaborate with IRF1, particularly where chromatin was less accessible. At these locations, IRF1 was required for the initial opening of chromatin, with ISGF3 extending accessibility and promoting the deposition of H3K4me1, marking poised enhancers. Because expression depends on the transcription factor NF-κB, which is activated in infected but not bystander cells, IRF-regulated enhancers required activation of both the IRF3 and NF-κB branches of the innate immune signaling network. However, type II IFN (IFN-γ), which is typically produced by T cells, may also induce expression through the STAT1 homodimer GAF. We showed that, upon IFN-γ stimulation, IRF1 was also responsible for opening inaccessible chromatin sites that could then be exploited by GAF to form de novo enhancers. Together, our results reveal how combinatorial logic gates of IRF1-ISGF3 or IRF1-GAF restrict immune epigenomic memory formation to macrophages exposed to pathogens or IFN-γ-secreting T cells but not bystander macrophages exposed transiently to type I IFN.
暴露于免疫刺激下的巨噬细胞会对其表观基因组进行重编程,以改变其后续功能。暴露于细菌脂多糖(LPS)会导致广泛的核小体重塑以及数千个新生增强子的形成。我们剖析了干扰素调节因子(IRF)网络诱导染色质开放和新生增强子形成的调控逻辑。我们发现,LPS激活的IRF3通过激活I型干扰素(IFN)诱导的ISGF3间接介导新生增强子的形成。然而,ISGF3通常需要与IRF1协同作用,特别是在染色质较难接近的区域。在这些位置,IRF1是染色质初始开放所必需的,而ISGF3则扩展了可及性并促进H3K4me1的沉积,标记为潜在的增强子。由于 表达依赖于转录因子NF-κB,其在受感染细胞而非旁观者细胞中被激活,因此IRF调节的增强子需要先天免疫信号网络的IRF3和NF-κB分支都被激活。然而,通常由T细胞产生的II型干扰素(IFN-γ)也可能通过STAT1同二聚体GAF诱导 表达。我们表明,在IFN-γ刺激下,IRF1也负责打开难以接近的染色质位点,然后GAF可以利用这些位点形成新生增强子。总之,我们的结果揭示了IRF1-ISGF3或IRF1-GAF的组合逻辑门如何将免疫表观基因组记忆的形成限制在暴露于病原体或分泌IFN-γ的T细胞的巨噬细胞中,而不是短暂暴露于I型干扰素的旁观者巨噬细胞中。