Cassani Marco, Niro Francesco, Fernandes Soraia, Pereira-Sousa Daniel, Faes Morazzo Sofia, Durikova Helena, Wang Tianzheng, González-Cabaleiro Lara, Vrbsky Jan, Oliver-De La Cruz Jorge, Klimovic Simon, Pribyl Jan, Loja Tomas, Skladal Petr, Caruso Frank, Forte Giancarlo
International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
Nano Lett. 2025 Feb 19;25(7):2600-2609. doi: 10.1021/acs.nanolett.4c04290. Epub 2025 Jan 8.
Bio-nano interactions have been extensively explored in nanomedicine to develop selective delivery strategies and reduce systemic toxicity. To enhance the delivery of nanocarriers to cancer cells and improve the therapeutic efficiency, different nanomaterials have been developed. However, the limited clinical translation of nanoparticle-based therapies, largely due to issues associated with poor targeting, requires a deeper understanding of the biological phenomena underlying cell-nanoparticle interactions. In this context, we investigate the molecular and cellular mechanobiology parameters that control such interactions. We demonstrate that the pharmacological inhibition or the genetic ablation of the key mechanosensitive component of the Hippo pathway, i.e., yes-associated protein, enhances nanoparticle internalization by 1.5-fold. Importantly, this phenomenon occurs independently of nanoparticle properties, such as size, or cell properties such as surface area and stiffness. Our study reveals that the internalization of nanoparticles in target cells can be controlled by modulating cell mechanosensing pathways, potentially enhancing nanotherapy specificity.
在纳米医学中,生物纳米相互作用已得到广泛研究,以开发选择性递送策略并降低全身毒性。为了增强纳米载体向癌细胞的递送并提高治疗效果,人们开发了不同的纳米材料。然而,基于纳米颗粒的疗法在临床上的转化有限,这在很大程度上是由于靶向性差的问题,因此需要更深入地了解细胞与纳米颗粒相互作用背后的生物学现象。在此背景下,我们研究了控制此类相互作用的分子和细胞力学生物学参数。我们证明,对Hippo通路的关键机械敏感成分,即Yes相关蛋白进行药理学抑制或基因敲除,可使纳米颗粒内化增加1.5倍。重要的是,这种现象的发生与纳米颗粒的性质(如大小)或细胞性质(如表面积和硬度)无关。我们的研究表明,通过调节细胞机械传感通路可以控制纳米颗粒在靶细胞中的内化,这可能会提高纳米治疗的特异性。