Zhao Hang, Chen Weicen, Li Yuanheng, Wang Hailiang, Li Hanfei, Li Tengfei, Han Fei, Sun Jing, Huang Laixin, Peng Xinhao, Chen Jianzhong, Yang Yihang, Qiu Xin, Liu Yan, Yu Huan, Hou Wen, Li Qingsong, Fu Guibing, You Chao, Liu Xijian, Li Fei, Li Xiangxin, Zhao Guoru, Wang Lin, Fang Peng, Li Guanglin, Zheng Hairong, Zhu Meifang, Yan Wei, Tian Qiong, Ma Teng, Liu Zhiyuan
Neural Engineering Centre, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Institute of Scientific Instrumentation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Sci Adv. 2025 Jan 10;11(2):eads1486. doi: 10.1126/sciadv.ads1486. Epub 2025 Jan 8.
Neuromuscular abnormality is the leading cause of disability in adults. Understanding the complex interplay between muscle structure and function is crucial for effective treatment and rehabilitation. However, the substantial deformation of muscles during movement (up to 40%) poses challenges for accurate assessment. To address this, we developed a wearable structural-functional sensing patch (WSFP) that enables synchronous analysis of muscle structure and function. The WSFP incorporates a soft, stretchable electrode array for high-performance electrophysiological monitoring with low contact impedance and high stability. Its innovative design absorbs skin deformation stress, ensuring stable adhesion of a flexible ultrasound transducer array, offering higher-fidelity imaging. With dynamic tissue imaging, it allows real-time visualization of muscle structure. The WSFP achieves superior accuracy in dynamic action recognition and disease assessment compared to single-modal methods, maintaining stable operation during motion for up to 72 hours. This study advances neuromuscular system analysis and improves diagnostic precision.
神经肌肉异常是成人残疾的主要原因。了解肌肉结构与功能之间的复杂相互作用对于有效治疗和康复至关重要。然而,运动过程中肌肉的大幅变形(高达40%)给准确评估带来了挑战。为了解决这一问题,我们开发了一种可穿戴结构功能传感贴片(WSFP),它能够同步分析肌肉结构和功能。WSFP集成了一个柔软、可拉伸的电极阵列,用于高性能电生理监测,具有低接触阻抗和高稳定性。其创新设计能够吸收皮肤变形应力,确保柔性超声换能器阵列的稳定粘附,提供更高保真度的成像。通过动态组织成像,它可以实时可视化肌肉结构。与单模态方法相比,WSFP在动态动作识别和疾病评估方面具有更高的准确性,在运动过程中可稳定运行长达72小时。这项研究推动了神经肌肉系统分析,并提高了诊断精度。