Tandarić Tana, Gutiérrez-de-Terán Hugo
Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Uppsala SE-75124, Sweden.
Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario s/n, Oviedo, Asturias ES-33011, Spain.
J Phys Chem B. 2025 Jan 23;129(3):886-899. doi: 10.1021/acs.jpcb.4c07391. Epub 2025 Jan 8.
Adenosine receptors, particularly AAR, are gaining attention for their role in pathological conditions such as cancer immunotherapy, prompting the exploration for promising therapeutic applications. Despite numerous selective AAR antagonists, the lack of selective full agonists makes the partial agonist BAY60-6583 one of the most interesting activators of this receptor. Recent cryo-EM structures have univocally revealed the binding mode of nonselective ribosidic agonists such as adenosine and its derivative NECA to AAR; however, two independent structures with BAY60-6583 show alternative binding orientations, raising the question of which is the physiologically relevant binding mode. In situations such as this, computational simulations that accurately predict shifts in binding free energy can complement experimental structures. Our study combines QligFEP and QresFEP protocols to directly compare the binding affinity of BAY60-6583 between alternative binding modes as well as providing a direct comparison of in silico mutagenesis studies on each pose with experimental mutational effects. Both methods converge on the experimentally determined binding mode that better explains both the existing SAR and mutagenesis data for this ligand. Our results allow the elucidation of the experimental binding orientation that should be considered as a basis for designing partial agonist derivatives with improved affinity and selectivity and underscore the value of free energy perturbation methods in aiding structure-based drug design.
腺苷受体,特别是AAR,因其在癌症免疫治疗等病理状况中的作用而受到关注,这促使人们探索有前景的治疗应用。尽管有众多选择性AAR拮抗剂,但缺乏选择性完全激动剂使得部分激动剂BAY60 - 6583成为该受体最有趣的激活剂之一。最近的冷冻电镜结构明确揭示了非选择性核糖苷类激动剂如腺苷及其衍生物NECA与AAR的结合模式;然而,两个与BAY60 - 6583的独立结构显示出不同的结合取向,这就提出了哪个是生理相关结合模式的问题。在这种情况下,能够准确预测结合自由能变化的计算模拟可以补充实验结构。我们的研究结合了QligFEP和QresFEP方案,以直接比较BAY60 - 6583在不同结合模式之间的结合亲和力,并对每个构象的计算机模拟诱变研究与实验诱变效应进行直接比较。两种方法都得出了实验确定的结合模式,该模式能更好地解释该配体现有的构效关系和诱变数据。我们的结果有助于阐明应被视为设计具有更高亲和力和选择性的部分激动剂衍生物基础的实验结合取向,并强调自由能微扰方法在辅助基于结构的药物设计中的价值。