Suppr超能文献

通过分子对接和分子动力学模拟揭示三种抑制剂对BRD4的选择性抑制机制。

Selective inhibition mechanism of three inhibitors to BRD4 uncovered by molecular docking and molecular dynamics simulations.

作者信息

Chen W, Sang L, Wang R, Zou D, Chen L

机构信息

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China.

College of Food and Bio-Engineering, Qiqihar University, Qiqihar, P. R. China.

出版信息

SAR QSAR Environ Res. 2024 Dec;35(12):1199-1219. doi: 10.1080/1062936X.2024.2447071. Epub 2025 Jan 8.

Abstract

Bromodomain-containing protein 4 (BRD4) plays an important role in gene transcription in a variety of diseases, including inflammation and cancer. However, the mechanism by which the BRD4 inhibitors bind selectively to its bromodomain 1 (BRD4-BD1) and bromodomain 2 (BRD4-BD2) remains unclear. Studying the interaction mechanism between bromodomain of BRD4 and inhibitors will provide new ideas for drug development and disease treatment. To explore the molecular mechanism of selective binding of three novel phenoxypyridone Cpd11, Cpd14, and Cpd23 to BRD4-BD1 and BRD4-BD2, respectively, molecular docking, molecular dynamics (MD) simulation, and free energy calculation containing molecular mechanics generalized born surface area (MM-GBSA) and solvation interaction energy (SIE) were achieved. The results show that these three inhibitors have different effects on the internal dynamics of BRD4-BD1 and BRD4-BD2, but the key interactions are similar. Key residues of BRD4-BD1 and BRD4-BD2, Ile146/Val439, Trp81/Trp374, Phe83/Phe375, Val87/Val380, Leu92/Leu385, Leu94/Leu387, Tyr97/Tyr390, and Asn140/Asn433, play a key role in selective binding of BRD4-BD1 and BRD4-BD2 to these three inhibitors. At the same time, non-polar interactions, especially van der Waals interactions, are the main drivers of the interactions of these three inhibitors with BRD4-BD1 and BRD4-BD2. These results provide useful dynamic and energy information for the development of novel highly selective phenoxypyridone inhibitors targeting BRD4-BD2.

摘要

含溴结构域蛋白4(BRD4)在包括炎症和癌症在内的多种疾病的基因转录中发挥重要作用。然而,BRD4抑制剂选择性结合其溴结构域1(BRD4-BD1)和溴结构域2(BRD4-BD2)的机制仍不清楚。研究BRD4的溴结构域与抑制剂之间的相互作用机制将为药物开发和疾病治疗提供新思路。为了分别探索三种新型苯氧基吡啶酮Cpd11、Cpd14和Cpd23与BRD4-BD1和BRD4-BD2选择性结合的分子机制,进行了分子对接、分子动力学(MD)模拟以及包含分子力学广义Born表面积(MM-GBSA)和溶剂化相互作用能(SIE)的自由能计算。结果表明,这三种抑制剂对BRD4-BD1和BRD4-BD2的内部动力学有不同影响,但关键相互作用相似。BRD4-BD1和BRD4-BD2的关键残基Ile146/Val439、Trp81/Trp374、Phe83/Phe375、Val87/Val380、Leu92/Leu385、Leu94/Leu387、Tyr97/Tyr390和Asn140/Asn433在BRD4-BD1和BRD4-BD2与这三种抑制剂的选择性结合中起关键作用。同时,非极性相互作用,尤其是范德华相互作用,是这三种抑制剂与BRD4-BD1和BRD4-BD2相互作用的主要驱动力。这些结果为开发新型高选择性靶向BRD4-BD2的苯氧基吡啶酮抑制剂提供了有用的动力学和能量信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验