文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习从CT数据中分割出髂嵴,用于面部重建手术的虚拟手术规划。

Segmentation of the iliac crest from CT-data for virtual surgical planning of facial reconstruction surgery using deep learning.

作者信息

Raith Stefan, Pankert Tobias, de Souza Nascimento Jônatas, Jaganathan Srikrishna, Peters Florian, Wien Mathias, Hölzle Frank, Modabber Ali

机构信息

Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.

Inzipio GmbH, Krantzstr. 7 Building 80, 52070, Aachen, Germany.

出版信息

Sci Rep. 2025 Jan 7;15(1):1097. doi: 10.1038/s41598-024-83031-0.


DOI:10.1038/s41598-024-83031-0
PMID:39773990
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11707128/
Abstract

BACKGROUND AND OBJECTIVES: For the planning of surgical procedures involving the bony reconstruction of the mandible, the autologous iliac crest graft, along with the fibula graft, has become established as a preferred donor region. While computer-assisted planning methods are increasingly gaining importance, the necessary preparation of geometric data based on CT imaging remains largely a manual process. The aim of this work was to develop and test a method for the automated segmentation of the iliac crest for subsequent reconstruction planning. METHODS: A total of 1,398 datasets with manual segmentations were obtained as ground truth, with a subset of 400 datasets used for training and validation of the Neural Networks and another subset of 177 datasets used solely for testing. A deep Convolutional Neural Network implemented in a 3D U-Net architecture using Tensorflow was employed to provide a pipeline for automatic segmentation. Transfer learning was applied for model training optimization. Evaluation metrics included the Dice Similarity Coefficient, Symmetrical Average Surface Distance, and a modified 95% Hausdorff Distance focusing on regions relevant for transplantation. RESULTS: The automated segmentation achieved high accuracy, with qualitative and quantitative assessments demonstrating predictions closely aligned with ground truths. Quantitative evaluation of the correspondence yielded values for geometric agreement in the transplant-relevant area of 92% +/- 7% (Dice coefficient) and average surface deviations of 0.605 +/- 0.41 mm. In all cases, the bones were identified as contiguous objects in the correct spatial orientation. The geometries of the iliac crests were consistently and completely recognized on both sides without any gaps. CONCLUSIONS: The method was successfully used to extract the individual geometries of the iliac crest from CT data. Thus, it has the potential to serve as an essential starting point in a digitized planning process and to provide data for subsequent surgical planning. The complete automation of this step allows for efficient and reliable preparation of anatomical data for reconstructive surgeries.

摘要

背景与目的:在涉及下颌骨骨重建的外科手术规划中,自体髂嵴移植与腓骨移植一样,已成为首选的供区。虽然计算机辅助规划方法越来越重要,但基于CT成像的几何数据的必要准备在很大程度上仍是一个手动过程。这项工作的目的是开发和测试一种用于髂嵴自动分割的方法,以便进行后续的重建规划。 方法:总共获得了1398个带有手动分割的数据集作为基准真值,其中400个数据集的子集用于神经网络的训练和验证,另一个177个数据集的子集仅用于测试。采用在3D U-Net架构中使用TensorFlow实现的深度卷积神经网络来提供自动分割的管道。迁移学习用于模型训练优化。评估指标包括骰子相似系数、对称平均表面距离和专注于与移植相关区域的修正95%豪斯多夫距离。 结果:自动分割实现了高精度,定性和定量评估表明预测结果与基准真值紧密对齐。对对应关系的定量评估得出,在移植相关区域的几何一致性值为92%±7%(骰子系数),平均表面偏差为0.605±0.41毫米。在所有情况下,骨骼都被识别为具有正确空间方向的连续物体。两侧髂嵴的几何形状都能持续且完整地被识别,没有任何间隙。 结论:该方法成功地从CT数据中提取了髂嵴的个体几何形状。因此,它有可能成为数字化规划过程中的一个重要起点,并为后续的手术规划提供数据。这一步骤的完全自动化能够高效且可靠地为重建手术准备解剖数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/0a1a9933055a/41598_2024_83031_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/476719e091ed/41598_2024_83031_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/1d4f8df15ec0/41598_2024_83031_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/cfb91f1e99f1/41598_2024_83031_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/43381b52c251/41598_2024_83031_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/5f5db0bb6cb1/41598_2024_83031_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/5a243043433e/41598_2024_83031_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/c06f3a6e2426/41598_2024_83031_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/8c615954e250/41598_2024_83031_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/d30d60d768b7/41598_2024_83031_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/0a1a9933055a/41598_2024_83031_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/476719e091ed/41598_2024_83031_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/1d4f8df15ec0/41598_2024_83031_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/cfb91f1e99f1/41598_2024_83031_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/43381b52c251/41598_2024_83031_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/5f5db0bb6cb1/41598_2024_83031_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/5a243043433e/41598_2024_83031_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/c06f3a6e2426/41598_2024_83031_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/8c615954e250/41598_2024_83031_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/d30d60d768b7/41598_2024_83031_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c809/11707128/0a1a9933055a/41598_2024_83031_Fig10_HTML.jpg

相似文献

[1]
Segmentation of the iliac crest from CT-data for virtual surgical planning of facial reconstruction surgery using deep learning.

Sci Rep. 2025-1-7

[2]
Mandible segmentation from CT data for virtual surgical planning using an augmented two-stepped convolutional neural network.

Int J Comput Assist Radiol Surg. 2023-8

[3]
Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial.

Trials. 2014-4-9

[4]
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.

Med Phys. 2021-11

[5]
A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.

Otolaryngol Head Neck Surg. 2023-10

[6]
Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction.

J Oral Maxillofac Surg. 2011-11

[7]
Automated segmentation of head CT scans for computer-assisted craniomaxillofacial surgery applying a hierarchical patch-based stack of convolutional neural networks.

Int J Comput Assist Radiol Surg. 2022-11

[8]
Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.

J Dent. 2021-11

[9]
A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.

Med Phys. 2023-11

[10]
A study on the morphology of iliac crest based on the objectives of jaw bone defect reconstruction.

Clin Oral Investig. 2024-6-21

引用本文的文献

[1]
A User-Friendly Software for Automated Knowledge-Based Virtual Surgical Planning in Mandibular Reconstruction.

J Clin Med. 2025-6-25

本文引用的文献

[1]
Virtual planning for mandible resection and reconstruction.

Innov Surg Sci. 2023-12-6

[2]
Advantages of a Training Course for Surgical Planning in Virtual Reality for Oral and Maxillofacial Surgery: Crossover Study.

JMIR Serious Games. 2023-1-19

[3]
Mandible segmentation from CT data for virtual surgical planning using an augmented two-stepped convolutional neural network.

Int J Comput Assist Radiol Surg. 2023-8

[4]
Aesthetic Reconstruction of Onco-surgical Mandibular Defects Using Free Fibular Flap with and without CAD/CAM Customized Osteotomy Guide: A Randomized Controlled Clinical Trial.

BMC Cancer. 2022-12-2

[5]
The state of virtual surgical planning in maxillary Reconstruction: A systematic review.

Oral Oncol. 2022-10

[6]
Comparison of the Accuracy and Clinical Parameters of Patient-Specific and Conventionally Bended Plates for Mandibular Reconstruction.

Front Oncol. 2021-11-26

[7]
Comparison of augmented reality and cutting guide technology in assisted harvesting of iliac crest grafts - A cadaver study.

Ann Anat. 2022-1

[8]
Multiclassification of Endoscopic Colonoscopy Images Based on Deep Transfer Learning.

Comput Math Methods Med. 2021

[9]
Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network.

Insights Imaging. 2021-7-7

[10]
Virtual Surgical Planning, Stereolitographic Models and CAD/CAM Titanium Mesh for Three-Dimensional Reconstruction of Fibula Flap with Iliac Crest Graft and Dental Implants.

J Clin Med. 2021-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索