文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多维分析确定了胰腺癌研究的高度优先基因。

Multidimensional analyses identify genes of high priority for pancreatic cancer research.

作者信息

Nwosu Zeribe C, Giza Heather M, Nassif Maya, Charlestin Verodia, Menjivar Rosa E, Kim Daeho, Kemp Samantha B, Sajjakulnukit Peter, Andren Anthony, Zhang Li, Lai William Km, Loveless Ian, Steele Nina, Hu Jiantao, Hu Biao, Wang Shaomeng, Pasca di Magliano Marina, Lyssiotis Costas A

机构信息

Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

JCI Insight. 2025 Jan 7;10(4):e174264. doi: 10.1172/jci.insight.174264.


DOI:10.1172/jci.insight.174264
PMID:39774001
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11949049/
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a drug-resistant and lethal cancer. Identification of the genes that consistently show altered expression across patient cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed 5 human PDAC microarray datasets. We defined genes as "consistent" if upregulated or downregulated in 4 or more datasets (adjusted P < 0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue specificity, essentiality for cell viability, and association with cancer features, e.g., tumor subtype, proliferation, metastasis, and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes, of which more than 50% to our knowledge were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling, and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Furthermore, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets, and biomarkers.

摘要

胰腺导管腺癌(PDAC)是一种耐药性且致命的癌症。鉴定在不同患者队列中持续显示表达改变的基因可以揭示有效的治疗靶点和策略。为了鉴定此类基因,我们分别分析了5个人类PDAC微阵列数据集。如果在4个或更多数据集中上调或下调(调整后P<0.05),我们将基因定义为“一致的”。随后在包括单细胞RNA测序数据在内的其他数据集中查询这些基因,我们分析了它们的通路富集、组织特异性、细胞活力的必要性以及与癌症特征的关联,例如肿瘤亚型、增殖、转移和不良生存结果。我们鉴定出2010个持续上调的基因和1928个下调的基因,据我们所知,其中超过50%在PDAC中未被表征。这些基因涵盖多个过程,包括细胞周期、免疫、转运、代谢、信号传导和转录/表观遗传调控——细胞周期和糖酵解变化最大。几个上调的基因与癌症特征相关,并且在先前的CRISPR/Cas9和RNA干扰筛选中,它们的抑制损害了PDAC细胞的活力。此外,上调的基因预测对溴结构域和额外末端(表观遗传)蛋白抑制敏感,其与吉西他滨联合使用时,会破坏氨基酸代谢和体内肿瘤生长。我们的结果突出了在探索PDAC机制、治疗靶点和生物标志物方面有待进一步研究的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/53ec9d48f5b7/jciinsight-10-174264-g246.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/c63010b83505/jciinsight-10-174264-g240.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/17829626feef/jciinsight-10-174264-g241.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/130e4824f303/jciinsight-10-174264-g242.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/2650ca961b8a/jciinsight-10-174264-g243.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/63a28bfc4a45/jciinsight-10-174264-g244.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/3b7a90f242bf/jciinsight-10-174264-g245.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/53ec9d48f5b7/jciinsight-10-174264-g246.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/c63010b83505/jciinsight-10-174264-g240.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/17829626feef/jciinsight-10-174264-g241.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/130e4824f303/jciinsight-10-174264-g242.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/2650ca961b8a/jciinsight-10-174264-g243.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/63a28bfc4a45/jciinsight-10-174264-g244.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/3b7a90f242bf/jciinsight-10-174264-g245.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd2/11949049/53ec9d48f5b7/jciinsight-10-174264-g246.jpg

相似文献

[1]
Multidimensional analyses identify genes of high priority for pancreatic cancer research.

JCI Insight. 2025-1-7

[2]
Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.

Gastroenterology. 2019-5-9

[3]
S100A14 promotes progression and gemcitabine resistance in pancreatic cancer.

Pancreatology. 2021-4

[4]
SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.

BMC Med Genomics. 2020-4-3

[5]
BRD4 promotes pancreatic ductal adenocarcinoma cell proliferation and enhances gemcitabine resistance.

Oncol Rep. 2015-4

[6]
A Novel MIF Signaling Pathway Drives the Malignant Character of Pancreatic Cancer by Targeting NR3C2.

Cancer Res. 2016-7-1

[7]
Integration of Bioinformatics Resources Reveals the Therapeutic Benefits of Gemcitabine and Cell Cycle Intervention in SMAD4-Deleted Pancreatic Ductal Adenocarcinoma.

Genes (Basel). 2019-9-28

[8]
Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma.

Cancer Lett. 2017-7-28

[9]
Integrated analysis of scRNA-seq and bulk RNA-seq data identifies BHLHE40 as a key gene in pancreatic cancer progression and gemcitabine resistance.

Semin Oncol. 2025-4

[10]
DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma.

PLoS One. 2012-2-20

引用本文的文献

[1]
Updates in the diagnosis and management of ductal adenocarcinoma of the pancreas.

World J Clin Oncol. 2025-6-24

本文引用的文献

[1]
CDK4/6 inhibition sensitizes MEK inhibition by inhibiting cell cycle and proliferation in pancreatic ductal adenocarcinoma.

Sci Rep. 2024-4-10

[2]
Precise Conformational Control Yielding Highly Potent and Exceptionally Selective BRD4 Degraders with Strong Antitumor Activity.

J Med Chem. 2023-6-22

[3]
Uridine-derived ribose fuels glucose-restricted pancreatic cancer.

Nature. 2023-6

[4]
Single-cell RNA sequencing reveals the effects of chemotherapy on human pancreatic adenocarcinoma and its tumor microenvironment.

Nat Commun. 2023-2-13

[5]
Nutrient transporters: connecting cancer metabolism to therapeutic opportunities.

Oncogene. 2023-3

[6]
Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer.

Cancer Discov. 2023-2-6

[7]
Anti-tumor efficacy of a potent and selective non-covalent KRAS inhibitor.

Nat Med. 2022-10

[8]
Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS Inhibitor.

J Med Chem. 2022-2-24

[9]
Elucidation of Tumor-Stromal Heterogeneity and the Ligand-Receptor Interactome by Single-Cell Transcriptomics in Real-world Pancreatic Cancer Biopsies.

Clin Cancer Res. 2021-11-1

[10]
Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer.

Nat Cancer. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索