Sciorilli Marco, Borges Lucas, Patti Taylor L, García-Martín Diego, Camilo Giancarlo, Anandkumar Anima, Aolita Leandro
Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE.
Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Nat Commun. 2025 Jan 8;16(1):476. doi: 10.1038/s41467-024-55346-z.
Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over binary variables using only n qubits, with tunable k > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in m, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for m = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for m = 2000, experiments with n = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.
量子计算机有望实现更高效的组合优化求解器,这可能会给广泛的应用带来变革。然而,实现这些优势的一个瓶颈在于,为了在实际中挑战经典算法,主流方法所需的量子比特数对于近期硬件来说大得令人望而却步。在此,我们引入一种仅使用(n)个量子比特、可调谐(k > 1)的针对二进制变量的最大割问题的变分求解器。参数数量和电路深度分别在(m)上呈现温和的线性和次线性缩放。此外,我们通过分析证明,特定的量子比特高效编码作为一个内置特性,能带来超多项式的贫瘠高原缓解。总体而言,这带来了高性能的量子求解器。例如,对于(m = 7000),数值模拟产生的解在质量上与最先进的经典求解器具有竞争力。反过来,对于(m = 2000),使用(n = 17)个俘获离子量子比特进行的实验中,最大割近似比率估计超过硬度阈值(0.941)。我们的发现为量子启发式求解器提供了有趣的启发方法,也为在近期量子设备上解决商业相关问题提供了一条有前景的途径。