Suppr超能文献

变分量子与量子启发式聚类。

Variational quantum and quantum-inspired clustering.

作者信息

Bermejo Pablo, Orús Román

机构信息

Multiverse Computing, Paseo de Miramón 170, 20014, San Sebastián, Spain.

Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastián, Spain.

出版信息

Sci Rep. 2023 Aug 16;13(1):13284. doi: 10.1038/s41598-023-39771-6.

Abstract

Here we present a quantum algorithm for clustering data based on a variational quantum circuit. The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum devices. The idea of the algorithm relies on reducing the clustering problem to an optimization, and then solving it via a Variational Quantum Eigensolver combined with non-orthogonal qubit states. In practice, the method uses maximally-orthogonal states of the target Hilbert space instead of the usual computational basis, allowing for a large number of clusters to be considered even with few qubits. We benchmark the algorithm with numerical simulations using real datasets, showing excellent performance even with one single qubit. Moreover, a tensor network simulation of the algorithm implements, by construction, a quantum-inspired clustering algorithm that can run on current classical hardware.

摘要

在此,我们展示一种基于变分量子电路的数据聚类量子算法。该算法能够将数据分类到多个簇中,并且可以轻松地在少比特的噪声中等规模量子设备上实现。算法的思想是将聚类问题简化为一个优化问题,然后通过结合非正交量子比特态的变分量子本征求解器来解决它。在实际应用中,该方法使用目标希尔伯特空间的最大正交态而非通常的计算基,即使在量子比特数量较少的情况下也能考虑大量的簇。我们使用真实数据集通过数值模拟对该算法进行基准测试,结果表明即使只用一个量子比特,该算法也具有出色的性能。此外,通过构造,该算法的张量网络模拟实现了一种可在当前经典硬件上运行的受量子启发的聚类算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3988/10432530/2707a0c7db94/41598_2023_39771_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验