Suppr超能文献

贝叶斯主动声音定位:人类的表现与理想观察者有多大程度的相似?

Bayesian active sound localisation: To what extent do humans perform like an ideal-observer?

作者信息

McLachlan Glen, Majdak Piotr, Reijniers Jonas, Mihocic Michael, Peremans Herbert

机构信息

Department of Engineering Management, University of Antwerp, Antwerp, Belgium.

Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria.

出版信息

PLoS Comput Biol. 2025 Jan 7;21(1):e1012108. doi: 10.1371/journal.pcbi.1012108. eCollection 2025 Jan.

Abstract

Self-motion is an essential but often overlooked component of sound localisation. As the directional information of a source is implicitly contained in head-centred acoustic cues, that acoustic input needs to be continuously combined with sensorimotor information about the head orientation in order to decode to a world-centred frame of reference. When utilised, head movements significantly reduce ambiguities in the directional information provided by the incoming sound. In this work, we model human active sound localisation (considering small head rotations) as an ideal observer. In the evaluation, we compared human performance obtained in a free-field active localisation experiment with the predictions of a Bayesian model. Model noise parameters were set a-priori based on behavioural results from other studies, i.e., without any post-hoc parameter fitting to behavioural results. The model predictions showed a general agreement with actual human performance. However, a spatial analysis revealed that the ideal observer was not able to predict localisation behaviour for each source direction. A more detailed investigation into the effects of various model parameters indicated that uncertainty on head orientation significantly contributed to the observed differences. Yet, the biases and spatial distribution of the human responses remained partially unexplained by the presented ideal observer model, suggesting that human sound localisation is sub-optimal.

摘要

自我运动是声音定位的一个重要但常被忽视的组成部分。由于声源的方向信息隐含在以头部为中心的声学线索中,因此需要将该声学输入与有关头部方向的感觉运动信息持续结合起来,以便解码到以世界为中心的参考系。当头部运动被利用时,它会显著减少传入声音所提供的方向信息中的模糊性。在这项工作中,我们将人类主动声音定位(考虑小幅度头部转动)建模为一个理想观察者。在评估中,我们将自由场主动定位实验中获得的人类表现与贝叶斯模型的预测进行了比较。模型噪声参数是根据其他研究的行为结果先验设定的,即没有对行为结果进行任何事后参数拟合。模型预测结果与实际人类表现总体相符。然而,空间分析表明,理想观察者无法预测每个声源方向的定位行为。对各种模型参数影响的更详细研究表明,头部方向的不确定性是观察到的差异的重要原因。然而,人类反应的偏差和空间分布仍有部分无法用所提出的理想观察者模型解释,这表明人类声音定位并非最优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b33/11741579/eaa81736cc94/pcbi.1012108.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验