Chen Ke, He Jianxun, Fu Lan, Song Xiaohua, Cao Ning, Yuan Hui
Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
Physical Examination Center, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
Sci Rep. 2025 Jan 7;15(1):1221. doi: 10.1038/s41598-024-83662-3.
Hypertension combined with hyperhomocysteinemia significantly raises the risk of ischemic stroke. Our study aimed to develop and validate a biomarker-based prediction model for ischemic stroke in Hyperhomocysteinemia-type (H-type) hypertension patients. We retrospectively included 3,305 patients in the development cohort, and externally validated in 103 patients from another cohort. Logistic regression, least absolute shrinkage and selection operator regression, and best subset selection analysis were used to assess the contribution of variables to ischemic stroke, and models were derived using four machine learning algorithms. Area Under Curve (AUC), calibration plot and decision-curve analysis respectively evaluated the discrimination and calibration of four models, then external validation and visualization of the best-performing model. There were 1,415 and 42 patients with ischemic stroke in the development and validation cohorts. The final model included 8 predictors: age, antihypertensive therapy, biomarkers (serum magnesium, serum potassium, proteinuria and hypersensitive C-reactive protein), and comorbidities (atrial fibrillation and hyperlipidemia). The optimal model, named ABC ischemic stroke model, showed good discrimination and calibration ability for ischemic stroke with AUC of 0.91 and 0.87 in the internal and external validation cohorts. The ABC ischemic stroke model had satisfactory predictive performances to assist clinicians in accurately identifying the risk of ischemic stroke for patients with H-type hypertension.
高血压合并高同型半胱氨酸血症会显著增加缺血性中风的风险。我们的研究旨在开发并验证一种基于生物标志物的预测模型,用于预测高同型半胱氨酸血症型(H型)高血压患者发生缺血性中风的风险。我们回顾性纳入了3305例患者作为开发队列,并在另一个队列的103例患者中进行了外部验证。采用逻辑回归、最小绝对收缩和选择算子回归以及最佳子集选择分析来评估各变量对缺血性中风的贡献,并使用四种机器学习算法推导模型。通过曲线下面积(AUC)、校准图和决策曲线分析分别评估四个模型的区分度和校准度,然后对表现最佳的模型进行外部验证和可视化。在开发队列和验证队列中,分别有1415例和42例患者发生缺血性中风。最终模型包括8个预测因子:年龄、抗高血压治疗、生物标志物(血清镁、血清钾、蛋白尿和超敏C反应蛋白)以及合并症(心房颤动和高脂血症)。最优模型名为ABC缺血性中风模型,在内部和外部验证队列中对缺血性中风均显示出良好的区分度和校准能力,AUC分别为0.91和0.87。ABC缺血性中风模型具有令人满意的预测性能,可协助临床医生准确识别H型高血压患者发生缺血性中风的风险。