Lu Jiafeng, Xia Wenjuan, Li Jincheng, Zhang Liya, Qian Chunfeng, Li Hong, Huang Boxian
State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Suzhou Affiliated Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
Sci Rep. 2025 Jan 7;15(1):1058. doi: 10.1038/s41598-025-85150-8.
The most effective method for mapping N6-methyladenosine (mA) is mA RNA immunoprecipitation sequencing (MeRIP-seq). The quality of MeRIP-seq relies on various factors, with the anti-mA antibody being a crucial determinant. However, comprehensive research on anti-mA antibody selection and optimal concentrations for different tissues has been limited. In this study, we optimized the concentration of five different anti-mA antibodies across various tissues. Our findings demonstrated that 5 µg of Millipore antibodies (ABE572 and MABE1006) performed well, starting from 15 µg total RNA from the liver, while 1.25 µg of Cell Signaling Technology antibodies (CST) (#56593) was suitable for low-input total RNA. In summary, we provide a significant guideline for anti-mA antibody selection in MeRIP sequencing for different tissues, especially in the context of low-input RNA.
用于绘制N6-甲基腺嘌呤(mA)图谱的最有效方法是mA RNA免疫沉淀测序(MeRIP-seq)。MeRIP-seq的质量取决于多种因素,其中抗mA抗体是一个关键决定因素。然而,关于抗mA抗体选择以及不同组织最佳浓度的全面研究一直有限。在本研究中,我们针对各种组织优化了五种不同抗mA抗体的浓度。我们的研究结果表明,5 µg的密理博抗体(ABE572和MABE1006)表现良好,起始肝脏总RNA量为15 µg,而1.25 µg的细胞信号技术公司(CST)抗体(#56593)适用于低起始量总RNA。总之,我们为不同组织的MeRIP测序中抗mA抗体的选择提供了重要指导,尤其是在低起始量RNA的情况下。
Biosci Rep. 2024-1-31
PLoS Biol. 2018-9-13
BMC Bioinformatics. 2020-3-14
BMC Bioinformatics. 2018-7-13
Mol Cell. 2019-10-29
Nat Methods. 2019-9-23