Brzobohatá Hana, Dugić Milica, Mojr Viktor, Sahatsapan Nitjawan, Kóšiová Ivana, Křížek Tomáš, Dolejšová Tereza, Lišková Petra, Cwiklik Lukasz, Rejman Dominik, Fišer Radovan, Mikušová Gabriela
Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 00, Prague, Czech Republic.
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
Sci Rep. 2025 Jan 7;15(1):1206. doi: 10.1038/s41598-024-83205-w.
Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length. LEGO-1-4 permeabilized cytoplasmic membrane of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, LEGO-1 with the longest linker module being the most effective. Gram-positive bacteria were more sensitive to LEGO-LPPO action compared to Gram-negatives, which was manifested as a delayed membrane permeabilization, higher minimal inhibitory concentration and lower amount of LEGO-LPPO bound to the cells. Outer membrane permeability measurements and time-kill assay showed that presence of the intact outer membrane brought about reduced susceptibility of Gram-negatives. Using liposome leakage and in silico simulations, we showed that membranes with major content of phosphatidylethanolamine were more prone to LEGO-LPPO permeabilization. The proposed mechanism stems from an electrostatic repulsion between highly positively charged LEGO-1 molecules and positively charged amino groups of phosphatidylethanolamine which destabilizes the membrane. Collectively, these data suggest that LEGO-LPPO membrane activity is enhanced by presence of phosphatidylethanolamine but hindered by presence of intact outer membrane.
寻找对抗多重耐药菌株的有效抗生素一直是一场充满挑战的竞赛。连接子进化基团优化脂磷毒素(LEGO-LPPOs)是一类靶向细胞质膜的小型模块化合成抗菌化合物。在此,我们着重探究具有不同疏水和连接子模块结构及长度的选定LEGO-LPPOs(LEGO-1、LEGO-2、LEGO-3和LEGO-4)疗效各异的原因。LEGO-1至LEGO-4均可使金黄色葡萄球菌、枯草芽孢杆菌、铜绿假单胞菌和大肠杆菌的细胞质膜发生通透化,其中连接子模块最长的LEGO-1最为有效。与革兰氏阴性菌相比,革兰氏阳性菌对LEGO-LPPO的作用更为敏感,表现为膜通透化延迟、最低抑菌浓度更高以及与细胞结合的LEGO-LPPO量更低。外膜通透性测量和时间杀菌试验表明,完整外膜的存在导致革兰氏阴性菌的敏感性降低。通过脂质体泄漏和计算机模拟,我们发现富含磷脂酰乙醇胺的膜更容易被LEGO-LPPO通透化。提出的机制源于高度带正电荷的LEGO-1分子与磷脂酰乙醇胺带正电荷的氨基之间存在静电排斥,从而使膜不稳定。总体而言,这些数据表明磷脂酰乙醇胺的存在增强了LEGO-LPPO的膜活性,但完整外膜的存在则对其产生阻碍。