Li Yinan, Huang Xiu, Qiao Qingqing, Li Yingying, Han Xu, Chen Caihong, Chen Yang, Guo Shuang, Zhang Yang, Gao Wenqing, Liu Huijuan, Sun Tao
State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.
Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
Adv Mater. 2025 Mar;37(12):e2414237. doi: 10.1002/adma.202414237. Epub 2025 Jan 7.
Sepsis is a life-threatening disease caused by a dysregulated immune response to infection, often involving the translocation of Gram-negative bacteria such as Escherichia coli (E. coli) into the bloodstream, triggering a cytokine storm. Despite its severity, no effective drugs currently exist for sepsis treatment. This study explores whether pathogen-derived carbon dots can mitigate their inherent toxicity while leveraging their structural similarity to pathogens to competitively bind pattern recognition receptors, thereby inhibiting sepsis. Based on this concept, E. coli wall-derived carbon dots (E-CDs) are synthesized and shown to reduce inflammatory cytokine production, protect organ function, and improve survival in septic mice. Mechanistic studies reveal that E-CDs competitively bind to lipopolysaccharide-binding protein with lipopolysaccharide, promoting toll-like receptor 4 degradation via the lysosomal pathway and inhibiting nuclear factor kappa-B (NF-κB) activation. Additionally, E-CDs exhibit antioxidant properties, reducing oxidative stress and mitochondrial DNA release, thereby suppressing overactivation of the stimulator of interferon genes pathway. In septic cynomolgus monkeys and patient-derived peripheral blood mononuclear cells, E-CDs alleviate inflammation and oxidative stress. Overall, this study demonstrates that E-CDs can suppress the cytokine storm in sepsis by co-silencing innate immune pathways, suggesting that converting pathogens into carbon dots offers a novel therapeutic strategy.
脓毒症是一种由对感染的免疫反应失调引起的危及生命的疾病,通常涉及革兰氏阴性菌(如大肠杆菌)进入血液,引发细胞因子风暴。尽管其严重性,但目前尚无有效的脓毒症治疗药物。本研究探讨病原体衍生的碳点是否能减轻其固有毒性,同时利用其与病原体的结构相似性竞争性结合模式识别受体,从而抑制脓毒症。基于这一概念,合成了大肠杆菌壁衍生的碳点(E-CDs),并显示其可减少炎性细胞因子的产生,保护器官功能,并提高脓毒症小鼠的存活率。机制研究表明,E-CDs与脂多糖竞争性结合脂多糖结合蛋白,通过溶酶体途径促进Toll样受体4降解,抑制核因子κB(NF-κB)激活。此外,E-CDs具有抗氧化特性,可减少氧化应激和线粒体DNA释放,从而抑制干扰素基因途径刺激物的过度激活。在脓毒症食蟹猴和患者来源的外周血单核细胞中,E-CDs可减轻炎症和氧化应激。总体而言,本研究表明E-CDs可通过共同沉默固有免疫途径抑制脓毒症中的细胞因子风暴,这表明将病原体转化为碳点提供了一种新的治疗策略。