Zhang Qiang, Zhang Xiaojing, Liu Baocang, Jing Peng, Xu Xuan, Hao Haigang, Gao Rui, Zhang Jun
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot, 010020, P. R. China.
School of Chemistry and Environmental Science, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot, 010022, P. R. China.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202420942. doi: 10.1002/anie.202420942. Epub 2025 Jan 16.
Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (Ni) and Co single-atom (Co) dual sites anchored on nitrogen-doped carbon nanotubes embedded with NiCo alloy (NiCo@NiCo-NCNTs) are constructed for electrochemical GOR. Remarkably, it can reach 10 mA cm at a low potential of 1.15 V versus the reversible hydrogen electrode (vs. RHE) and realize a high formate selectivity of 93.27 % even at high glycerol conversion of 98.81 % at 1.45 V vs. RHE. The GOR mechanism and pathway are systematically elucidated via experimental analyses and theoretical calculations. It is revealed that the active hydroxyl (*OH) can be produced during the GOR. The Ni, Co, and NiCo synergistically optimizes the electronic structure of Co active sites, reducing the energy barriers of *OH-mediated cleavage of C-C bonds and dehydrogenation of C intermediates. This decreases the number of reaction intermediates and reaction steps of GOR-to-FA, thus increasing the formate production efficiency. After coupling GOR with hydrogen evolution reaction in a membrane electrode assembly cell, 14.26 g of formate and 23.10 L of H are produced at 100 mA cm for 108 h.
电催化甘油氧化反应(GOR)制备高价值甲酸(FA)受到活性物种形成电位高和C-C键裂解动力学缓慢的阻碍。在此,构建了锚定在嵌入NiCo合金的氮掺杂碳纳米管(NiCo@NiCo-NCNTs)上的镍单原子(Ni)和钴单原子(Co)双位点用于电化学GOR。值得注意的是,相对于可逆氢电极(vs. RHE),在1.15 V的低电位下它可以达到10 mA cm ,并且即使在相对于RHE为1.45 V的高甘油转化率98.81%时,也能实现93.27%的高甲酸盐选择性。通过实验分析和理论计算系统地阐明了GOR的机理和途径。结果表明,在GOR过程中可以产生活性羟基(OH)。Ni、Co和NiCo协同优化了Co活性位点的电子结构,降低了OH介导的C-C键裂解和C中间体脱氢的能量势垒。这减少了GOR生成FA的反应中间体数量和反应步骤,从而提高了甲酸盐的生产效率。在膜电极组装电池中将GOR与析氢反应耦合后,在100 mA cm 下反应108 h可产生14.26 g甲酸盐和23.10 L氢气。