Kuş Zeki, Aydin Musa, Kiraz Berna, Kiraz Alper
Fatih Sultan Mehmet Vakif University, Department of Computer Engineering, Istanbul, Turkiye.
Fatih Sultan Mehmet Vakif University, Department of Artificial Intelligence and Data Engineering, Istanbul, Turkiye.
Artif Intell Med. 2025 Feb;160:103064. doi: 10.1016/j.artmed.2024.103064. Epub 2025 Jan 4.
Deep neural networks have significantly advanced medical image classification across various modalities and tasks. However, manually designing these networks is often time-consuming and suboptimal. Neural Architecture Search (NAS) automates this process, potentially finding more efficient and effective models. This study provides a comprehensive comparative analysis of our two NAS methods, PBC-NAS and BioNAS, across multiple biomedical image classification tasks using the MedMNIST dataset. Our experiments evaluate these methods based on classification performance (Accuracy (ACC) and Area Under the Curve (AUC)) and computational complexity (Floating Point Operation Counts). Results demonstrate that BioNAS models slightly outperform PBC-NAS models in accuracy, with BioNAS-2 achieving the highest average accuracy of 0.848. However, PBC-NAS models exhibit superior computational efficiency, with PBC-NAS-2 achieving the lowest average FLOPs of 0.82 GB. Both methods outperform state-of-the-art architectures like ResNet-18 and ResNet-50 and AutoML frameworks such as auto-sklearn, AutoKeras, and Google AutoML. Additionally, PBC-NAS and BioNAS outperform other NAS studies in average ACC results (except MSTF-NAS), and show highly competitive results in average AUC. We conduct extensive ablation studies to investigate the impact of architectural parameters, the effectiveness of fine-tuning, search space efficiency, and the discriminative performance of generated architectures. These studies reveal that larger filter sizes and specific numbers of stacks or modules enhance performance. Fine-tuning existing architectures can achieve nearly optimal results without separating NAS for each dataset. Furthermore, we analyze search space efficiency, uncovering patterns in frequently selected operations and architectural choices. This study highlights the strengths and efficiencies of PBC-NAS and BioNAS, providing valuable insights and guidance for future research and practical applications in biomedical image classification.
深度神经网络在各种模态和任务的医学图像分类方面取得了显著进展。然而,手动设计这些网络通常既耗时又不够理想。神经架构搜索(NAS)使这一过程自动化,有可能找到更高效有效的模型。本研究使用MedMNIST数据集,对我们的两种NAS方法PBC-NAS和BioNAS在多个生物医学图像分类任务中进行了全面的比较分析。我们的实验基于分类性能(准确率(ACC)和曲线下面积(AUC))以及计算复杂度(浮点运算次数)对这些方法进行评估。结果表明,BioNAS模型在准确率上略优于PBC-NAS模型,其中BioNAS-2达到了最高平均准确率0.848。然而,PBC-NAS模型表现出卓越的计算效率,PBC-NAS-2实现了最低平均浮点运算次数0.82GB。两种方法都优于诸如ResNet-18和ResNet-50等当前最先进的架构以及诸如auto-sklearn、AutoKeras和谷歌AutoML等自动机器学习框架。此外,PBC-NAS和BioNAS在平均ACC结果方面优于其他NAS研究(MSTF-NAS除外),并且在平均AUC方面显示出极具竞争力的结果。我们进行了广泛的消融研究,以调查架构参数的影响、微调的有效性、搜索空间效率以及生成架构的判别性能。这些研究表明,更大的滤波器尺寸和特定数量的堆叠或模块可提高性能。对现有架构进行微调可以在不针对每个数据集单独进行NAS的情况下达到近乎最优的结果。此外,我们分析了搜索空间效率,揭示了频繁选择的操作和架构选择中的模式。本研究突出了PBC-NAS和BioNAS的优势和效率,为生物医学图像分类的未来研究和实际应用提供了有价值的见解和指导。