Kirtonia Anuradha, Pandya Gouri, Singh Aishwarya, Kumari Rachana, Singh Bhavana, Kapoor Sonia, Khattar Ekta, Pandey Amit Kumar, Garg Manoj
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India.
Life Sci. 2025 Feb 1;362:123364. doi: 10.1016/j.lfs.2024.123364. Epub 2025 Jan 6.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC. Firstly, we observed significant overexpression of XPO1 transcript in 179 PDAC patients than 171 normal pancreatic tissues in TCGA transcriptomic dataset. Higher XPO1 transcript levels displayed worse overall and disease-free survival. Further, we confirmed significant upregulation of XPO1 in a panel of PDAC cells. Eltanexor treatment resulted in significant inhibition of cell viability, clonogenic growth, migration, and epithelial-mesenchymal transition (EMT), along with the induction of cell cycle arrest. Mechanistically, eltanexor modulated the expression of key proteins including p21, p27, p53, cyclin B1, cyclin D1, c-Myc, N-cadherin, vimentin, E-cadherin associated with the cell viability, growth, cell cycle and EMT. Additionally, the eltanexor treatment resulted in marked increase in expression of γH2AX, and cleaved PARP, cleaved caspase-9 leading to induction of DNA damage and apoptosis of PDAC cells, respectively. Moreover, eltanexor treatment regulated the expression of key non-coding RNAs including miR193b, DINO, MALAT-1, H19, and SOX21-AS1 linked with tumorigenesis. Our results revealed a correlation among miR193b/KRAS/LAMC2, XPO1/KRAS, and LAMC2/KRAS. The findings also revealed that eltanexor treatment rescued the expression of miR193b which acts as a sponge for LAMC2 and KRAS resulting in the suppression of AKT/ERK downstream signaling cascade in PDAC. Interestingly, the combination of eltanexor with gemcitabine showed significant anticancer activity in PDAC cells. Altogether, our findings revealed the crucial role of XPO1 in modulating the expression of oncogenic proteins, ncRNAs, and DNA damage during PDAC progression as well as identified novel therapeutic miR-193b/KRAS/LAMC2/ERK/AKT axis.
胰腺导管腺癌(PDAC)是侵袭性最强、最严重的恶性肿瘤之一,治疗选择有限且效果不佳。XPO1是核输出及肿瘤抑制蛋白激活的关键调节因子。本研究评估了抑制XPO1对PDAC的治疗潜力及其分子机制。首先,我们在TCGA转录组数据集中观察到,179例PDAC患者的XPO1转录本表达显著高于171例正常胰腺组织。XPO1转录水平越高,总生存期和无病生存期越差。此外,我们证实在一组PDAC细胞中XPO1显著上调。埃替拉胺治疗导致细胞活力、克隆形成生长、迁移及上皮-间质转化(EMT)受到显著抑制,同时诱导细胞周期停滞。从机制上来说,埃替拉胺调节了包括p21、p27、p53、细胞周期蛋白B1、细胞周期蛋白D1、c-Myc、N-钙黏蛋白、波形蛋白、E-钙黏蛋白等与细胞活力、生长、细胞周期和EMT相关的关键蛋白的表达。此外,埃替拉胺治疗导致γH2AX、裂解的PARP和裂解的半胱天冬酶-9的表达显著增加,分别导致PDAC细胞的DNA损伤和凋亡。此外,埃替拉胺治疗调节了包括miR193b、DINO、MALAT-1、H19和SOX21-AS1等与肿瘤发生相关的关键非编码RNA的表达。我们的结果揭示了miR193b/KRAS/LAMC2、XPO1/KRAS和LAMC2/KRAS之间的相关性。研究结果还显示,埃替拉胺治疗可恢复miR193b的表达,miR193b可作为LAMC2和KRAS的海绵,从而抑制PDAC中AKT/ERK下游信号级联反应。有趣的是,埃替拉胺与吉西他滨联合使用在PDAC细胞中显示出显著的抗癌活性。总之,我们的研究结果揭示了XPO1在PDAC进展过程中调节致癌蛋白、非编码RNA表达及DNA损伤方面的关键作用,并确定了新的治疗性miR-193b/KRAS/LAMC2/ERK/AKT轴。