Chen Chen, Li Yuxin, Yu Haiyan, Xu Zhiyuan, Tian Huaixiang, Yuan Haibin
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, China.
Food Res Int. 2025 Jan;200:115451. doi: 10.1016/j.foodres.2024.115451. Epub 2024 Nov 30.
The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations. The results reveal notable variations in the binding abilities of the four AACs and β-CN, with the strongest binding observed for 3-methylbutanal. Specifically, the binding affinity (Ka) values between β-casein and benzaldehyde, 2-methylpropanal, 2-methylbutanal, and 3-methylbutanal are 2.26 × 10, 1.78 × 10, 2.03 × 10, and 2.52 × 10 M, respectively, indicating moderate binding affinity. Additionally, the quenching rate constants (Kq) for interactions with these compounds are 2.57 × 10, 2.92 × 10, 3.74 × 10, and 4.81 × 10 Ms, significantly exceeding the collisional quenching limit, suggesting specific interactions. The interactions between the four AACs and β-CN occur through irreversible covalent bonding, primarily involving hydrogen bonds and hydrophobic interactions. The quenching mechanism of β-CN and the four AACs is static, which leads to changes in the secondary structure and microenvironment of β-CN. Molecular docking and dynamics simulations confirm that hydrogen bonds and hydrophobic interactions are the key driving forces for the binding of β-CN with the four AACs, and contribute to the stability of the composite system.
蛋白质与香气化合物之间的相互作用对加工过程中奶酪风味的保留有显著影响。然而,奶酪蛋白质与醛类香气化合物(AACs)之间如何相互作用仍不清楚。本研究旨在使用固相微萃取-气相色谱/质谱联用(SPME-GC/MS)、多光谱技术和分子动力学模拟,阐明AACs(苯甲醛、2-甲基丙醛、2-甲基丁醛和3-甲基丁醛)与β-酪蛋白(β-CN)之间的相互作用机制。结果显示,四种AACs与β-CN的结合能力存在显著差异,其中3-甲基丁醛的结合最强。具体而言,β-酪蛋白与苯甲醛、2-甲基丙醛、2-甲基丁醛和3-甲基丁醛之间的结合亲和力(Ka)值分别为2.26×10、1.78×10、2.03×10和2.52×10 M,表明具有中等结合亲和力。此外,与这些化合物相互作用的猝灭速率常数(Kq)分别为2.57×10、2.92×10、3.74×10和4.81×10 M/s,显著超过碰撞猝灭极限,表明存在特异性相互作用。四种AACs与β-CN之间的相互作用通过不可逆的共价键发生,主要涉及氢键和疏水相互作用。β-CN与四种AACs的猝灭机制是静态的,这导致了β-CN二级结构和微环境的变化。分子对接和动力学模拟证实,氢键和疏水相互作用是β-CN与四种AACs结合的关键驱动力,并有助于复合体系的稳定性。