Suppr超能文献

使用计算机模拟模型,活检部位和肿瘤相关巨噬细胞在预测恶性胶质瘤复发中的作用

Biopsy location and tumor-associated macrophages in predicting malignant glioma recurrence using an in-silico model.

作者信息

Shojaee Pejman, Weinholtz Edwin, Schaadt Nadine S, Feuerhake Friedrich, Hatzikirou Haralampos

机构信息

Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.

Department of Neuropathology, Institute for Pathology, Hannover Medical School, Hannover, Germany.

出版信息

NPJ Syst Biol Appl. 2025 Jan 8;11(1):3. doi: 10.1038/s41540-024-00478-7.

Abstract

Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages. In particular, we introduced a state-of-the-art spatio-temporal model of tumor-immune interactions, emphasizing the interplay between macrophages and glioma cells. This model serves as a synthetic reality for assessing the predictive value of various features. We generated a cohort of virtual patients based on our mathematical model. Each patient's dataset includes simulated T1Gd and Fluid-attenuated inversion recovery (FLAIR) MRI volumes. T1-weighted imaging highlights anatomical structures with high contrast, providing clear detail on brain morphology, whereas FLAIR suppresses fluid signals, improving the visualization of lesions near fluid-filled spaces, which is particularly helpful for identifying peritumoral edema. Additionally, we simulated results on macrophage density and proliferative activity, either in a specified part of the tumor, namely the tumor core or edge ("localized"), or unspecified ("non-localized"). To enhance the realism of our synthetic data, we imposed different levels of noise. Our findings reveal that macrophage density at the tumor edge contributed to a high predictive value of feature importance for the selected regression model. Moreover, there are lower MSE values for the "localized" biopsy in prediction accuracy toward recurrence post-resection compared with "non-localized" specimens in the noisy data. In conclusion, the results show that localized biopsies provided more information about tumor behavior, especially at the interface of tumor and normal tissue (Edge).

摘要

预测高级别弥漫性胶质瘤(HGG)在最大安全神经外科切除及联合放化疗后的生物学行为和复发时间(TTR),对于规划临床随访、选择可能必要的二线治疗以及提高恶性脑肿瘤患者的生活质量起着关键作用。HGG目前的标准治疗(SoC)包括随访神经放射学成像以尽早检测复发,并依赖于多种临床、神经病理学和放射学预后因素,这些因素在预测TTR方面准确性有限。在本研究中,我们使用计算机模拟分析,旨在通过考虑以下因素的作用来提高TTR的预测能力:(i)通过当前SoC中使用的诊断方法可获得的预后相关信息;(ii)目前不属于标准诊断检查一部分的基于先进图像的信息,如肿瘤-正常组织界面(边缘)特征以及肿瘤内活检位置特有的定量数据;(iii)肿瘤相关巨噬细胞的信息。特别是,我们引入了一种先进的肿瘤-免疫相互作用时空模型,强调巨噬细胞与胶质瘤细胞之间的相互作用。该模型作为一个综合现实,用于评估各种特征的预测价值。我们基于数学模型生成了一组虚拟患者。每个患者的数据集包括模拟的T1Gd和液体衰减反转恢复(FLAIR)MRI体积。T1加权成像以高对比度突出解剖结构,提供脑形态的清晰细节,而FLAIR抑制液体信号,改善对充满液体空间附近病变的可视化,这对于识别瘤周水肿特别有帮助。此外,我们模拟了肿瘤特定部位(即肿瘤核心或边缘,“局部化”)或未指定部位(“非局部化”)的巨噬细胞密度和增殖活性结果。为了增强合成数据的真实性,我们施加了不同程度的噪声。我们的研究结果表明,肿瘤边缘的巨噬细胞密度对所选回归模型的特征重要性具有较高的预测价值。此外,与噪声数据中的“非局部化”标本相比,“局部化”活检在预测切除后复发的准确性方面具有更低的均方误差值。总之,结果表明局部活检提供了更多关于肿瘤行为的信息,特别是在肿瘤与正常组织的界面(边缘)处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4f/11711667/42ef7fe657b0/41540_2024_478_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验