Cellular and organismal function of choline metabolism.
作者信息
Kenny Timothy C, Scharenberg Samantha, Abu-Remaileh Monther, Birsoy Kıvanç
机构信息
Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
出版信息
Nat Metab. 2025 Jan;7(1):35-52. doi: 10.1038/s42255-024-01203-8. Epub 2025 Jan 8.
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation. Consistent with its pleiotropic role in cellular physiology, choline metabolism contributes to numerous developmental and physiological processes in the brain, liver, kidney, lung and immune system, and both choline deficiency and excess are implicated in human disease. Mutations in the genes encoding choline metabolism proteins lead to inborn errors of metabolism, which manifest in diverse clinical pathologies. While the identities of many enzymes involved in choline metabolism were identified decades ago, only recently has the field begun to understand the diverse mechanisms by which choline availability is regulated and fuelled via metabolite transport/recycling and nutrient acquisition. This review provides a comprehensive overview of choline metabolism, emphasizing emerging concepts and their implications for human health and disease.