文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石油污染对拂子茅生长及根际微生物群落的影响

Effects of oil pollution on the growth and rhizosphere microbial community of Calamagrostis epigejos.

作者信息

Wei Ying, Zhu Yukun, Yang Liqun, Chen Chen, Yue Ming, Mao Zhuxin, Wang Yuchao, Li Qian, Li Yang, Lv Jinlin, Xue Wenyan

机构信息

Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.

Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, 710061, China.

出版信息

Sci Rep. 2025 Jan 8;15(1):1278. doi: 10.1038/s41598-025-85754-0.


DOI:10.1038/s41598-025-85754-0
PMID:39779932
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11711279/
Abstract

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm). Metagenomic sequencing technology was employed to analyze the community structure and diversity of soil bacteria, fungi, archaea, and viruses. Additionally, molecular ecological network analysis was integrated to explore species interactions and ecosystem stability within these microbial communities. The functional profiles of soil microorganisms were elucidated based on data from the KEGG database. Results demonstrated a significant increase in petroleum hydrocarbon content, polyphenol oxidase activity, hydrogen peroxide enzyme activity, and acid phosphatase activity upon crude oil addition, while β-glucosidase content, fiber disaccharide hydrolase content, and tiller number decreased (P < 0.05). Proteobacteria and Actinobacteria were identified as dominant bacterial phyla; Ascomycota, Basidiomycota, and Mucoromycota were found to be dominant fungal phyla; Thaumarchaeota emerged as a dominant archaeal phylum; and Uroviricota represented a dominant viral phylum. The diversity of soil bacterial, fungal, archaeal, and viral communities increased with higher amounts of added crude oil. Ecological network analysis revealed a robust collaborative relationship among bacterial, fungal, archaeal, and viral community species in the control treatment (CK), while strong competitive relationships were observed among these species in the treatments with 10% (F10) and 40% (F40) crude oil concentrations. Structural equation modeling analysis indicated significant positive correlations between fungal community, viral community, enzyme activity, and plant growth; conversely, bacterial and archaeal communities showed significant negative correlations with plant growth (P < 0.05). Correlation analysis identified acid phosphatase as the primary environmental factor influencing soil microbial function. Acid phosphatase levels along with tiller number, aboveground biomass, and petroleum hydrocarbons significantly influenced the fungal community (P < 0.05), while underground biomass had a significant impact on the archaeal community (P < 0.05). Acid phosphatase levels along with cellulose-hydrolyzing enzymes, tiller number, and petroleum hydrocarbons exhibited significant effects on the viral community (P < 0.05). This study investigated variations in bacterial, fungal, archaeal, and viral communities under different crude oil concentrations as well as their driving factors, providing a theoretical foundation for evaluating Calamagrostis epigejos' potential to remediate crude oil pollution.

摘要

细菌、真菌、古菌和病毒是反映土壤健康状况的生物。研究原油污染对拂子茅土壤中细菌、真菌、古菌和病毒群落结构及相互作用的影响,可为拂子茅生态系统原油污染修复提供理论支持。本研究选取拂子茅作为研究对象,设置不同水平的原油添加量(0 kg/hm、10 kg/hm、40 kg/hm)。采用宏基因组测序技术分析土壤细菌、真菌、古菌和病毒的群落结构及多样性。此外,结合分子生态网络分析探讨这些微生物群落内的物种相互作用和生态系统稳定性。基于KEGG数据库的数据阐明土壤微生物的功能概况。结果表明,添加原油后,石油烃含量、多酚氧化酶活性、过氧化氢酶活性和酸性磷酸酶活性显著增加,而β-葡萄糖苷酶含量、纤维二糖水解酶含量和分蘖数减少(P<0.05)。变形菌门和放线菌门被鉴定为主要细菌门类;子囊菌门、担子菌门和毛霉门被发现是主要真菌门类;奇古菌门是主要古菌门类;尾病毒目是主要病毒门类。土壤细菌、真菌、古菌和病毒群落的多样性随着原油添加量的增加而增加。生态网络分析表明,对照处理(CK)中细菌、真菌、古菌和病毒群落物种之间存在强大的协作关系,而在原油浓度为10%(F10)和40%(F40)的处理中,这些物种之间观察到强烈的竞争关系。结构方程模型分析表明,真菌群落、病毒群落、酶活性和植物生长之间存在显著正相关;相反,细菌和古菌群落与植物生长呈显著负相关(P<0.05)。相关性分析确定酸性磷酸酶是影响土壤微生物功能的主要环境因子。酸性磷酸酶水平以及分蘖数、地上生物量和石油烃显著影响真菌群落(P<0.05),而地下生物量对古菌群落有显著影响(P<0.05)。酸性磷酸酶水平以及纤维素水解酶、分蘖数和石油烃对病毒群落有显著影响(P<0.05)。本研究调查了不同原油浓度下细菌、真菌、古菌和病毒群落的变化及其驱动因素,为评估拂子茅修复原油污染的潜力提供了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/95ee864a41b2/41598_2025_85754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/32b612eb7996/41598_2025_85754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/b62e01931937/41598_2025_85754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/fa55dc0a252f/41598_2025_85754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/6b66acdb0f25/41598_2025_85754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/c616e2b1a566/41598_2025_85754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/d5991b8c386d/41598_2025_85754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/95ee864a41b2/41598_2025_85754_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/32b612eb7996/41598_2025_85754_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/b62e01931937/41598_2025_85754_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/fa55dc0a252f/41598_2025_85754_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/6b66acdb0f25/41598_2025_85754_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/c616e2b1a566/41598_2025_85754_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/d5991b8c386d/41598_2025_85754_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3e5/11711279/95ee864a41b2/41598_2025_85754_Fig7_HTML.jpg

相似文献

[1]
Effects of oil pollution on the growth and rhizosphere microbial community of Calamagrostis epigejos.

Sci Rep. 2025-1-8

[2]
Response of rhizosphere microbial community characteristics and ecosystem multifunctionality to the addition of crude oil in and .

Front Microbiol. 2025-4-15

[3]
Trophic relationships between protists and bacteria and fungi drive the biogeography of rhizosphere soil microbial community and impact plant physiological and ecological functions.

Microbiol Res. 2024-3

[4]
Remediation of Crude Oil-Polluted Soil by the Bacterial Rhizosphere Community of Revealed by 16S rRNA Genes.

Int J Environ Res Public Health. 2020-2-25

[5]
Rhizosphere microbial community construction during the latitudinal spread of the invader Chromolaena odorata.

BMC Microbiol. 2024-8-6

[6]
Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area.

PLoS One. 2019-7-2

[7]
Comparative Investigation of Bacterial, Fungal, and Archaeal Community Structures in Soils in a Typical Oilfield in Jianghan, China.

Arch Environ Contam Toxicol. 2017-1

[8]
Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun.

Environ Pollut. 2017-11-15

[9]
Metagenomic profiling of rhizosphere microbial community structure and diversity associated with maize plant as affected by cropping systems.

Int Microbiol. 2021-8

[10]
Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.

FEMS Microbiol Ecol. 2014-10

引用本文的文献

[1]
Comparative metagenomics on community structure and diversity of rhizomicrobiome associated with monoculture and soybean precedent carrot.

Sci Rep. 2025-8-1

本文引用的文献

[1]
Nutrient availability contributes to structural and functional diversity of microbiome in Xinjiang oilfield.

Front Microbiol. 2024-7-31

[2]
Driving mechanisms for the adaptation and degradation of petroleum hydrocarbons by native microbiota from seas prone to oil spills.

J Hazard Mater. 2024-9-5

[3]
Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau.

Front Microbiol. 2024-1-11

[4]
The role of microorganisms in petroleum degradation: Current development and prospects.

Sci Total Environ. 2023-3-20

[5]
Geo-Distribution Patterns of Soil Fungal Community of in Tibet.

J Fungi (Basel). 2022-11-21

[6]
Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar.

RSC Adv. 2019-10-31

[7]
Plant secondary metabolites altering root microbiome composition and function.

Curr Opin Plant Biol. 2022-6

[8]
The root microbiome: Community assembly and its contributions to plant fitness.

J Integr Plant Biol. 2022-2

[9]
Isolation and molecular characterization of causal agent of blue mold on L. and its control by Griseb.

Saudi J Biol Sci. 2021-12

[10]
Oil contamination drives the transformation of soil microbial communities: Co-occurrence pattern, metabolic enzymes and culturable hydrocarbon-degrading bacteria.

Ecotoxicol Environ Saf. 2021-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索