Pan Le, Yin Chao, Jin Ke-Jia, Huang Chen-Xing, Wang Xiang, Wang Ying, Rinkiko Suguro, Jia Jian-Guo, Zhang Guo-Ping, Zhu Yi-Zhun, Dai Yu-Xiang, Zou Yun-Zeng, Gong Hui
Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, China.
Acta Pharmacol Sin. 2025 Mar;46(3):606-617. doi: 10.1038/s41401-024-01415-4. Epub 2025 Jan 8.
Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms. We performed transverse aortic constriction (TAC) to induce pressure overload in cardiomyocyte-specific LRP6 overexpression mice (LRP6-over mice) and in control mice (α-myosin heavy chain (α-MHC) Mer-Cre-Mer Tg mice or named MCM mice). Cardiac function and hypertrophy were assessed using echocardiography. LRP6-over mice showed improved cardiac function and reduced hypertrophy after TAC, compared with MCM mice. We also applied mechanical stretch to cultured neonatal rat cardiomyocytes to model pressure overload in vitro. Mass spectrometry analysis showed that LRP6 interacts with HSP90α and cathepsin D (CTSD) in cardiomyocytes under mechanical stress. Further analysis demonstrated that LRP6 facilitates CTSD-mediated degradation of HSP90α, consequently inhibiting β-catenin activation and reducing cardiac hypertrophy post-TAC. Treatment with recombinant HSP90α protein or the CTSD inhibitor, pepstatin A, partly abolished the protective effect of LRP6 overexpression on myocardial hypertrophy and cardiac function after TAC in mice. Collectively, our data suggest that LRP6 protects against pressure overload-induced myocardial remodeling and that the CTSD/HSP90α/β-catenin axis may be a potential therapeutic target.
压力超负荷会引发病理性心脏重塑,包括心脏肥大和纤维化,进而导致心脏功能障碍或心力衰竭。最近,我们观察到低密度脂蛋白受体相关蛋白6(LRP6)在压力超负荷小鼠模型中通过减轻心脏纤维化显示出增强心脏功能的潜力。在本研究中,我们调查了LRP6作为压力超负荷诱导的心脏肥大潜在调节因子的作用,并阐明了其潜在的分子机制。我们对心肌细胞特异性LRP6过表达小鼠(LRP6过表达小鼠)和对照小鼠(α-肌球蛋白重链(α-MHC)Mer-Cre-Mer转基因小鼠或称为MCM小鼠)进行横向主动脉缩窄(TAC)以诱导压力超负荷。使用超声心动图评估心脏功能和肥大情况。与MCM小鼠相比,LRP6过表达小鼠在TAC后心脏功能改善且肥大减轻。我们还对培养的新生大鼠心肌细胞施加机械拉伸以在体外模拟压力超负荷。质谱分析表明,在机械应力下,LRP6在心肌细胞中与HSP90α和组织蛋白酶D(CTSD)相互作用。进一步分析表明,LRP6促进CTSD介导的HSP90α降解,从而抑制β-连环蛋白激活并减轻TAC后的心脏肥大。用重组HSP90α蛋白或CTSD抑制剂胃蛋白酶抑制剂A处理部分消除了LRP6过表达对小鼠TAC后心肌肥大和心脏功能的保护作用。总体而言,我们的数据表明LRP6可预防压力超负荷诱导的心肌重塑,并且CTSD/HSP90α/β-连环蛋白轴可能是一个潜在的治疗靶点。