Abishek N Monford Paul, Wang Xun, Jeon Heung Jin, Lim Heon M
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
Mol Microbiol. 2025 Jan;123(1):75-87. doi: 10.1111/mmi.15339.
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state. The operon utilizes both Rho-independent and Rho-dependent terminators. Our findings demonstrate that long-loop coupled transcription-translation complexes preferentially terminate at the upstream Rho-independent terminator, while short-loop complexes bypass it, terminating at the downstream Rho-dependent terminator. The efficiency of the Rho-independent terminator is enhanced by an extended U-track, suggesting a novel mechanism to overcome ribosome inhibition. These results uncover a new regulatory layer in transcription termination, challenging the traditional view of this process as random and highlighting a predetermined mechanism based on the coupling state. We propose that tandem terminators may function as regulatory checkpoints under fluctuating ribosome-RNAP coupling conditions, which can occur due to specific cellular states or factors affecting ribosome or RNAP binding efficiency. This suggests a previously overlooked mechanism that could refine transcription termination choices and expand our understanding of transcription regulation.
核糖体与RNA聚合酶活性中心之间的距离,即所谓的mRNA环长度,对于转录-翻译偶联至关重要。尽管存在多种具有不同mRNA环长度的表达体,但它们在体内的作用在很大程度上仍未得到探索。本研究考察了大肠杆菌半乳糖操纵子中转录终止的调控机制,揭示了其在转录和翻译偶联状态中的关键作用。该操纵子同时利用不依赖Rho因子和依赖Rho因子的终止子。我们的研究结果表明,长环偶联转录-翻译复合物优先在上游不依赖Rho因子的终止子处终止,而短环复合物则绕过它,在下游依赖Rho因子的终止子处终止。不依赖Rho因子的终止子的效率通过延长的U序列得到增强,这提示了一种克服核糖体抑制的新机制。这些结果揭示了转录终止中的一个新的调控层面,挑战了将这一过程视为随机的传统观点,并突出了基于偶联状态的一种预先确定的机制。我们提出,串联终止子可能在核糖体-RNA聚合酶偶联条件波动时作为调控检查点发挥作用,这种波动可能是由于特定的细胞状态或影响核糖体或RNA聚合酶结合效率的因素引起的。这提示了一种先前被忽视的机制,该机制可以优化转录终止选择并扩展我们对转录调控的理解。