Zainal Nur Hani, Benjet Corina, Albor Yesica, Nuñez-Delgado Mauricio, Zambrano-Cruz Renato, Contreras-Ibáñez Carlos C, Cudris-Torres Lorena, de la Peña Francisco R, González Noé, Guerrero-López José Benjamín, Gutierrez-Garcia Raúl A, Jiménez-Peréz Ana Lucía, Medina-Mora Maria Elena, Patiño Pamela, Cuijpers Pim, Gildea Sarah M, Kazdin Alan E, Kennedy Chris J, Luedtke Alex, Sampson Nancy A, Petukhova Maria V, Zubizarreta Jose R, Kessler Ronald C
Department of Psychology, National University of Singapore, Singapore, Singapore.
Center for Global Mental Health, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
Int J Methods Psychiatr Res. 2025 Mar;34(1):e70005. doi: 10.1002/mpr.70005.
Heterogeneity of treatment effects (HTEs) can occur because of either differential treatment compliance or differential treatment effectiveness. This distinction is important, as it has action implications, but it is unclear how to distinguish these two possibilities statistically in precision treatment analysis given that compliance is not observed until after randomization. We review available statistical methods and illustrate a recommended method in secondary analysis in a trial focused on HTE.
The trial randomized n = 880 anxious and/or depressed university students to guided internet-delivered cognitive behavioral therapy (i-CBT) or treatment-as-usual (TAU) and evaluated joint remission. Previously reported analyses documented superiority of i-CBT but significant HTE. In the reanalysis reported here, we used baseline (i.e., pre-randomization) covariates to predict compliance among participants randomized to guided i-CBT, generated a cross-validated within-person expected compliance score based on this model in both intervention groups, and then used this expected composite score as a predictor in an expanded HTE analysis.
The significant intervention effect was limited to participants with high expected compliance. Residual HTE was nonsignificant.
Future psychotherapy HTE trials should routinely develop and include expected compliance composite scores to distinguish the effects of differential treatment compliance from the effects of differential treatment effectiveness.
治疗效果的异质性(HTEs)可能由于治疗依从性差异或治疗效果差异而出现。这种区分很重要,因为它具有行动意义,但鉴于直到随机分组后才观察到依从性,在精准治疗分析中尚不清楚如何从统计学上区分这两种可能性。我们回顾了现有的统计方法,并在一项关注HTE的试验的二次分析中说明了一种推荐方法。
该试验将n = 880名焦虑和/或抑郁的大学生随机分为接受指导性互联网认知行为疗法(i-CBT)或常规治疗(TAU),并评估联合缓解情况。先前报道的分析记录了i-CBT的优越性,但存在显著的HTE。在此处报告的重新分析中,我们使用基线(即随机分组前)协变量来预测随机接受指导性i-CBT的参与者的依从性,基于该模型在两个干预组中生成个体内交叉验证的预期依从性得分,然后在扩展的HTE分析中使用该预期综合得分作为预测因子。
显著的干预效果仅限于预期依从性高的参与者。残余HTE不显著。
未来的心理治疗HTE试验应常规开发并纳入预期依从性综合得分,以区分治疗依从性差异的影响与治疗效果差异的影响。