Boix-Constant Carla, Rybakov Andrey, Miranda-Pérez Clara, Martínez-Carracedo Gabriel, Ferrer Jaime, Mañas-Valero Samuel, Coronado Eugenio
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
Departamento de Física, Universidad de Oviedo, Oviedo, 33007, Spain.
Adv Mater. 2025 Feb;37(8):e2415774. doi: 10.1002/adma.202415774. Epub 2025 Jan 8.
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks. By rotating 90 degrees these units, symmetric (monolayer/monolayer and bilayer/bilayer) and asymmetric (monolayer/bilayer) heterostructures are fabricated. The magneto-transport properties reveal the appearance of magnetic hysteresis, which is highly dependent upon the magnitude and direction of the applied magnetic field and is determined not only by the twist-angle but also by the number of layers forming the stack. This high tunability allows switching between volatile and non-volatile magnetic memory at zero-field and controlling the appearance of abrupt magnetic reversal processes at either negative or positive field values on demand. The phenomenology is rationalized based on the different spin-switching processes occurring in the layers, as supported by micromagnetic simulations. The results highlight the combination between twist-angle and number of layers as key elements for engineering spin-switching reversals in twisted magnets, of interest toward the miniaturization of spintronic devices and realizing novel spin textures.
扭转二维范德华磁体能够形成并控制不同的自旋纹理,如斯格明子或磁畴。除了旋转角度外,还可以通过增加构成扭曲范德华异质结构的磁性层数量来设计不同的自旋反转过程。在此,将A型反铁磁体CrSBr的原始单层和双层视为构建单元。通过将这些单元旋转90度,制备出对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运性质揭示了磁滞现象的出现,磁滞高度依赖于外加磁场的大小和方向,不仅由扭转角决定,还由构成堆叠的层数决定。这种高度的可调性使得在零场下能够在易失性和非易失性磁存储器之间切换,并按需控制在负场或正场值下突然出现的磁反转过程。基于层中发生的不同自旋切换过程,对该现象进行了合理解释,微磁模拟也支持这一点。结果突出了扭转角和层数的组合作为扭曲磁体中设计自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理具有重要意义。