Suppr超能文献

通过堆叠工程在正交扭曲二维CrSBr磁体中实现可编程磁滞

Programmable Magnetic Hysteresis in Orthogonally-Twisted 2D CrSBr Magnets via Stacking Engineering.

作者信息

Boix-Constant Carla, Rybakov Andrey, Miranda-Pérez Clara, Martínez-Carracedo Gabriel, Ferrer Jaime, Mañas-Valero Samuel, Coronado Eugenio

机构信息

Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.

Departamento de Física, Universidad de Oviedo, Oviedo, 33007, Spain.

出版信息

Adv Mater. 2025 Feb;37(8):e2415774. doi: 10.1002/adma.202415774. Epub 2025 Jan 8.

Abstract

Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks. By rotating 90 degrees these units, symmetric (monolayer/monolayer and bilayer/bilayer) and asymmetric (monolayer/bilayer) heterostructures are fabricated. The magneto-transport properties reveal the appearance of magnetic hysteresis, which is highly dependent upon the magnitude and direction of the applied magnetic field and is determined not only by the twist-angle but also by the number of layers forming the stack. This high tunability allows switching between volatile and non-volatile magnetic memory at zero-field and controlling the appearance of abrupt magnetic reversal processes at either negative or positive field values on demand. The phenomenology is rationalized based on the different spin-switching processes occurring in the layers, as supported by micromagnetic simulations. The results highlight the combination between twist-angle and number of layers as key elements for engineering spin-switching reversals in twisted magnets, of interest toward the miniaturization of spintronic devices and realizing novel spin textures.

摘要

扭转二维范德华磁体能够形成并控制不同的自旋纹理,如斯格明子或磁畴。除了旋转角度外,还可以通过增加构成扭曲范德华异质结构的磁性层数量来设计不同的自旋反转过程。在此,将A型反铁磁体CrSBr的原始单层和双层视为构建单元。通过将这些单元旋转90度,制备出对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运性质揭示了磁滞现象的出现,磁滞高度依赖于外加磁场的大小和方向,不仅由扭转角决定,还由构成堆叠的层数决定。这种高度的可调性使得在零场下能够在易失性和非易失性磁存储器之间切换,并按需控制在负场或正场值下突然出现的磁反转过程。基于层中发生的不同自旋切换过程,对该现象进行了合理解释,微磁模拟也支持这一点。结果突出了扭转角和层数的组合作为扭曲磁体中设计自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c52d/11854866/21931a28e375/ADMA-37-2415774-g003.jpg

相似文献

1
Programmable Magnetic Hysteresis in Orthogonally-Twisted 2D CrSBr Magnets via Stacking Engineering.
Adv Mater. 2025 Feb;37(8):e2415774. doi: 10.1002/adma.202415774. Epub 2025 Jan 8.
2
Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers.
Nat Mater. 2024 Feb;23(2):212-218. doi: 10.1038/s41563-023-01735-6. Epub 2023 Nov 30.
3
Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements.
Adv Mater. 2022 Oct;34(41):e2204940. doi: 10.1002/adma.202204940. Epub 2022 Sep 13.
4
Exchange Bias Between van der Waals Materials: Tilted Magnetic States and Field-Free Spin-Orbit-Torque Switching.
Adv Mater. 2024 Mar;36(13):e2305739. doi: 10.1002/adma.202305739. Epub 2024 Jan 4.
6
Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit.
Adv Mater. 2023 Nov;35(47):e2307195. doi: 10.1002/adma.202307195. Epub 2023 Oct 12.
7
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
Nature. 2018 Apr 5;556(7699):80-84. doi: 10.1038/nature26154. Epub 2018 Mar 5.
8
A Van der Waals Interface Hosting Two Groups of Magnetic Skyrmions.
Adv Mater. 2022 Apr;34(16):e2110583. doi: 10.1002/adma.202110583. Epub 2022 Mar 10.
9
Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures.
Nano Lett. 2022 Apr 27;22(8):3349-3355. doi: 10.1021/acs.nanolett.2c00564. Epub 2022 Apr 5.
10
Control of structure and spin texture in the van der Waals layered magnet CrSBr.
Nat Commun. 2022 Sep 15;13(1):5420. doi: 10.1038/s41467-022-32737-8.

引用本文的文献

1
Fundamentals and applications of van der Waals magnets in magnon spintronics.
Newton. 2025 Mar 3;1(1):None. doi: 10.1016/j.newton.2025.100018.

本文引用的文献

1
Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr.
Nano Lett. 2024 Oct 4. doi: 10.1021/acs.nanolett.4c03919.
2
Twist-assisted all-antiferromagnetic tunnel junction in the atomic limit.
Nature. 2024 Aug;632(8027):1045-1051. doi: 10.1038/s41586-024-07818-x. Epub 2024 Aug 14.
3
Moiré magnetic exchange interactions in twisted magnets.
Nat Comput Sci. 2023 Apr;3(4):314-320. doi: 10.1038/s43588-023-00430-5. Epub 2023 Apr 26.
4
Emergence of Stable Meron Quartets in Twisted Magnets.
Nano Lett. 2024 Jan 10;24(1):74-81. doi: 10.1021/acs.nanolett.3c03246. Epub 2023 Dec 26.
5
Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers.
Nat Mater. 2024 Feb;23(2):212-218. doi: 10.1038/s41563-023-01735-6. Epub 2023 Nov 30.
6
Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit.
Adv Mater. 2023 Nov;35(47):e2307195. doi: 10.1002/adma.202307195. Epub 2023 Oct 12.
7
Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons.
Nature. 2023 Aug;620(7974):533-537. doi: 10.1038/s41586-023-06275-2. Epub 2023 Aug 16.
8
Interplay between Optical Emission and Magnetism in the van der Waals Magnetic Semiconductor CrSBr in the Two-Dimensional Limit.
ACS Nano. 2023 Jul 25;17(14):13224-13231. doi: 10.1021/acsnano.3c00375. Epub 2023 Jul 13.
9
Gate-Controlled Magnetotransport and Electrostatic Modulation of Magnetism in 2D Magnetic Semiconductor CrPS.
Adv Mater. 2023 Jul;35(30):e2211653. doi: 10.1002/adma.202211653. Epub 2023 Jun 11.
10
Tunable interaction between excitons and hybridized magnons in a layered semiconductor.
Nat Nanotechnol. 2023 Jan;18(1):23-28. doi: 10.1038/s41565-022-01259-1. Epub 2022 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验