Brunner Julius, Wrzesińska-Lashkova Angelika, Scalon Lucas, Muniz Ruth Pinheiro, Prudnikau Anatol, Pohl Darius, Löffler Markus, Paulus Fabian, Vaynzof Yana
Chair for Emerging Electronic Technologies, TUD Dresden University of Technology, Nöthnitzer Straße 61, 01187, Dresden, Germany.
Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069, Dresden, Germany.
Small. 2025 Feb;21(7):e2409709. doi: 10.1002/smll.202409709. Epub 2025 Jan 9.
The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance. By careful characterization and analysis throughout the degradation and recovery process, the underlying physical and chemical mechanisms that govern the evolution of the device performance could be identified. It is shown that the ligand shell of the quantum dots, rather than the instability of the semiconducting material itself, is the driving factor in these mechanisms. This highlights the important role of surface chemistry and ligand design in enhancing perovskite quantum dot photovoltaics.
钙钛矿量子点太阳能电池的稳定性是这项技术面临的关键挑战之一。本研究揭示了碘化铯铅(CsPbI)量子点太阳能电池独特的降解行为。首次表明,通过将降解后的样品暴露在湿度环境中,CsPbI量子点光伏器件因氧气导致的降解和性能损失可以逆转,使性能得以恢复,甚至超过初始性能。通过在整个降解和恢复过程中进行仔细的表征和分析,可以确定控制器件性能演变的潜在物理和化学机制。结果表明,量子点的配体壳层而非半导体材料本身的不稳定性是这些机制中的驱动因素。这突出了表面化学和配体设计在增强钙钛矿量子点光伏方面的重要作用。