Zhu Xianglin, Zhou Enlong, Tai Xishi, Zong Huibin, Yi Jianjian, Yuan Zhimin, Zhao Xingling, Huang Peng, Xu Hui, Jiang Zaiyong
School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, PR China.
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China.
Angew Chem Int Ed Engl. 2025 Mar 24;64(13):e202425439. doi: 10.1002/anie.202425439. Epub 2025 Jan 16.
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-CN were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g-CN nanodots and ultra-thin g-CN nanoflakes, exhibited a significant S-scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm), the g-CN homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 μmol h. Furthermore, a reversed CH selectivity in CO reduction was observed, yielding 80.30 μmol g h with a selectivity of 96.86 %, in contrast to the performance of bulk g-CN, which produced only 2.22 μmol g h with the 15.69 % CH selectivity. These findings not only highlight the significant potential of the g-CN homojunction photocatalyst for hydrogen production and CO reduction but also propose a superior and effective strategy for optimizing the structural properties of g-CN, which are crucial for the design of photocatalytic reactions.
有效的S型同质结依赖于能带结构的精确调控和有利电荷迁移界面的构建。在此,通过自组装超分子前驱体的精细聚合来调控g-CN的电子结构性质。实验和密度泛函理论(DFT)结果表明,本征带隙和表面电子特性均得到了调整,从而形成了由本征范德华力促进的原位重构同质结界面。由g-CN纳米点和超薄g-CN纳米片组成的同质结催化剂表现出显著的S型载流子分离机制,这提高了电子和空穴的利用率。因此,在AM 1.5光照(~100 mW/cm)下,g-CN同质结光催化剂实现了580 μmol h的显著析氢速率。此外,在CO还原反应中观察到了CH选择性的反转,产率为80.30 μmol g h,选择性为96.86%,而块状g-CN的性能仅为2.22 μmol g h,CH选择性为15.69%。这些发现不仅突出了g-CN同质结光催化剂在制氢和CO还原方面的巨大潜力,还提出了一种优化g-CN结构性质的卓越且有效的策略,这对于光催化反应的设计至关重要。