Gao Mingming, Zhao Minghao, Yang Qianqian, Bao Lan, Chen Liwei, Liu Wei, Feng Jing
College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China.
Nanomaterials (Basel). 2025 Jun 20;15(13):956. doi: 10.3390/nano15130956.
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-CN) has garnered significant attention in energy and environmental applications owing to its visible-light-responsive bandgap (~2.7 eV), exceptional thermal/chemical stability, and earth-abundant composition. However, the practical performance of g-CN is fundamentally constrained by intrinsic limitations, including its inherently low SSA (<20 m/g via conventional thermal polymerization), rapid recombination of photogenerated carriers, and inefficient charge transfer kinetics. Notably, the theoretical SSA of g-CN reaches 2500 m/g, yet achieving this value remains challenging due to strong interlayer van der Waals interactions and structural collapse during synthesis. Recent advances demonstrate that state-of-the-art strategies can elevate its SSA to 50-200 m/g. To break this surface area barrier, advanced strategies achieve SSA enhancement through three primary pathways: pre-treatment (molecular and supramolecular precursor design), in process (templating and controlled polycondensation), and post-processing (chemical exfoliation and defect engineering). This review systematically examines controllable synthesis methodologies for high-SSA g-CN, analyzing how SSA amplification intrinsically modulates band structures, extends carrier lifetimes, and boosts catalytic efficiencies. Future research should prioritize synergistic multi-stage engineering to approach the theoretical SSA limit (2500 m/g) while preserving robust optoelectronic properties.
具有大比表面积(SSA)的纳米材料已成为储能和环境修复的关键平台,主要是因为它们增加了活性位点的暴露、改善了传质能力以及具有优异的界面反应性。其中,聚合氮化碳(g-CN)因其可见光响应带隙(约2.7 eV)、出色的热/化学稳定性以及丰富的地球元素组成,在能源和环境应用中受到了广泛关注。然而,g-CN的实际性能从根本上受到其固有局限性的制约,包括其固有的低比表面积(通过传统热聚合<20 m²/g)、光生载流子的快速复合以及低效的电荷转移动力学。值得注意的是,g-CN的理论比表面积达到2500 m²/g,但由于层间强大的范德华相互作用以及合成过程中的结构坍塌,实现这一数值仍然具有挑战性。最近的进展表明,先进的策略可以将其比表面积提高到50-200 m²/g。为了突破这一表面积障碍,先进策略通过三种主要途径实现比表面积的提高:预处理(分子和超分子前驱体设计)、过程中(模板化和可控缩聚)以及后处理(化学剥离和缺陷工程)。本综述系统地研究了高比表面积g-CN的可控合成方法,分析了比表面积放大如何本质上调节能带结构、延长载流子寿命并提高催化效率。未来的研究应优先考虑协同多阶段工程,以接近理论比表面积极限(2500 m²/g),同时保持强大的光电性能。