Suppr超能文献

高压微流控系统的加工与检测:综述

Processing and inspection of high-pressure microfluidics systems: A review.

作者信息

Song Jiangyi, Meng Shaoxin, Liu Jianben, Chen Naichao

机构信息

School Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.

State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China.

出版信息

Biomicrofluidics. 2025 Jan 6;19(1):011501. doi: 10.1063/5.0235201. eCollection 2025 Jan.

Abstract

In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.

摘要

在微流控领域,利用高驱动压力进行微流控分析的高压微流控技术是一项不断发展的技术。该技术将微流控与增压相结合,通过大于10兆帕的高压驱动装置来控制流体流动。本文首先回顾了现有的高压微流控系统,并描述了其组件和应用。然后,总结了用于高压微流控芯片微加工的几种材料,回顾了它们的特性、加工方法和键合方法。此外,还介绍了用于高压微流控芯片微加工的先进激光加工技术。最后,本文研究了高压微流控系统中采用的分析检测方法,包括光学和电化学检测方法。对分析检测方法的综述展示了高压微流控系统的不同功能和应用场景。总之,本研究提供了一种高效且先进的微流控系统,可在高压条件下广泛应用于化学工程、食品工业和环境工程领域。

相似文献

1
Processing and inspection of high-pressure microfluidics systems: A review.
Biomicrofluidics. 2025 Jan 6;19(1):011501. doi: 10.1063/5.0235201. eCollection 2025 Jan.
2
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
4
Dressings and topical agents for treating pressure ulcers.
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2.
7
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
8
Dressings and topical agents for treating venous leg ulcers.
Cochrane Database Syst Rev. 2018 Jun 15;6(6):CD012583. doi: 10.1002/14651858.CD012583.pub2.
9
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.
Cochrane Database Syst Rev. 2018 Jun 25;6(6):CD012404. doi: 10.1002/14651858.CD012404.pub2.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

2
Paper-based microfluidics: Analyte-driven imbibition under the lens.
Biomicrofluidics. 2025 May 29;19(3):034104. doi: 10.1063/5.0263749. eCollection 2025 May.

本文引用的文献

1
Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation.
Micromachines (Basel). 2023 Jun 23;14(7):1289. doi: 10.3390/mi14071289.
3
Design and fabrication of a novel on-chip pressure sensor for microchannels.
Lab Chip. 2022 Nov 8;22(22):4306-4316. doi: 10.1039/d2lc00648k.
4
Highly efficient passive Tesla valves for microfluidic applications.
Microsyst Nanoeng. 2022 Sep 7;8:97. doi: 10.1038/s41378-022-00437-4. eCollection 2022.
5
Microfluidic active pressure and flow stabiliser.
Sci Rep. 2021 Nov 18;11(1):22504. doi: 10.1038/s41598-021-01865-4.
8
Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications.
Sci Technol Adv Mater. 2019 Dec 11;21(1):11-24. doi: 10.1080/14686996.2019.1702861. eCollection 2020.
9
Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser.
Sci Rep. 2019 Dec 27;9(1):20215. doi: 10.1038/s41598-019-56711-5.
10
Microfluidic Passive Flow Regulatory Device with an Integrated Check Valve for Enhanced Flow Control.
Micromachines (Basel). 2019 Sep 27;10(10):653. doi: 10.3390/mi10100653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验