Suppr超能文献

使用磁共振成像(MRI)的乳腺癌计算机辅助检测(CADe)与分割方法

Computer-Aided Detection (CADe) and Segmentation Methods for Breast Cancer Using Magnetic Resonance Imaging (MRI).

作者信息

Jannatdoust Payam, Valizadeh Parya, Saeedi Nikoo, Valizadeh Gelareh, Salari Hanieh Mobarak, Saligheh Rad Hamidreza, Gity Masoumeh

机构信息

School of Medicine, Tehran University of Medical Science, Tehran, Iran.

Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran.

出版信息

J Magn Reson Imaging. 2025 Jun;61(6):2376-2390. doi: 10.1002/jmri.29687. Epub 2025 Jan 9.

Abstract

Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines. This review aims to provide a comprehensive overview of the current state of CADe systems in breast MRI, focusing on the technical details of pipelines and segmentation models including classical intensity-based methods, supervised and unsupervised machine learning (ML) approaches, and the latest deep learning (DL) architectures. It highlights recent advancements from traditional algorithms to sophisticated DL models such as U-Nets, emphasizing CADe implementation of multi-parametric MRI acquisitions. Despite these advancements, CADe systems face challenges like variable false-positive and negative rates, complexity in interpreting extensive imaging data, variability in system performance, and lack of large-scale studies and multicentric models, limiting the generalizability and suitability for clinical implementation. Technical issues, including image artefacts and the need for reproducible and explainable detection algorithms, remain significant hurdles. Future directions emphasize developing more robust and generalizable algorithms, integrating explainable AI to improve transparency and trust among clinicians, developing multi-purpose AI systems, and incorporating large language models to enhance diagnostic reporting and patient management. Additionally, efforts to standardize and streamline MRI protocols aim to increase accessibility and reduce costs, optimizing the use of CADe systems in clinical practice. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 2.

摘要

乳腺癌仍然是一个主要的健康问题,早期检测对于提高生存率至关重要。磁共振成像(MRI)因其对浸润性乳腺癌具有较高的敏感性而成为关键工具。计算机辅助检测(CADe)系统通过识别潜在病变、帮助放射科医生关注感兴趣区域、提取定量特征以及与计算机辅助诊断(CADx)流程集成,提高了MRI的有效性。本综述旨在全面概述乳腺MRI中CADe系统的当前状态,重点关注流程和分割模型的技术细节,包括基于经典强度的方法、监督和无监督机器学习(ML)方法以及最新的深度学习(DL)架构。它强调了从传统算法到复杂的DL模型(如U-Net)的最新进展,重点是多参数MRI采集的CADe实施。尽管有这些进展,CADe系统仍面临挑战,如假阳性和假阴性率可变、解释大量成像数据的复杂性、系统性能的变异性以及缺乏大规模研究和多中心模型,这限制了其可推广性和临床应用的适用性。技术问题,包括图像伪影以及对可重复和可解释检测算法的需求,仍然是重大障碍。未来的方向强调开发更强大和可推广的算法、集成可解释人工智能以提高临床医生之间的透明度和信任度、开发多用途人工智能系统以及纳入大语言模型以增强诊断报告和患者管理。此外,标准化和简化MRI协议的努力旨在提高可及性并降低成本,优化CADe系统在临床实践中的使用。证据水平:无 技术疗效:2级

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验