文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习在乳腺磁共振成像中的应用。

Application of Machine Learning to Breast MR Imaging.

作者信息

Lo Gullo Roberto, van Veldhuizen Vivien, Roa Tina, Kapetas Panagiotis, Teuwen Jonas, Pinker Katja

机构信息

Department of Radiology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA.

AI for Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

出版信息

Magn Reson Med Sci. 2025 Jul 1;24(3):279-299. doi: 10.2463/mrms.rev.2025-0021. Epub 2025 Jun 14.


DOI:10.2463/mrms.rev.2025-0021
PMID:40518301
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12263444/
Abstract

The demand for breast imaging services continues to grow, driven by expanding indications in breast cancer diagnosis and treatment. This increasing demand underscores the potential role of artificial intelligence (AI) to enhance workflow efficiency as well as to further unlock the abundant imaging data to achieve improvements along the breast cancer pathway. Although AI has made significant advancements in mammography and digital breast tomosynthesis, with commercially available computer-aided detection (CAD systems) widely used for breast cancer screening and detection, its adoption in breast MRI has been slower. This lag is primarily attributed to the inherent complexity of breast MRI examinations and also hence the more limited availability of large, well-annotated publicly available breast MRI datasets. Despite these challenges, interest in AI implementation in breast MRI remains strong, fueled by the expanding use and indications for breast MRI. This article explores the implementation of AI in breast MRI across the breast cancer care pathway, highlighting its potential to revolutionize the way we detect and manage breast cancer. By addressing current challenges and examining emerging AI applications, we aim to provide a comprehensive overview of how AI is reshaping breast MRI and improving outcomes for patients.

摘要

在乳腺癌诊断和治疗的适应症不断扩大的推动下,对乳腺成像服务的需求持续增长。这种不断增长的需求凸显了人工智能(AI)在提高工作流程效率以及进一步挖掘丰富的成像数据以在乳腺癌诊疗过程中实现改善方面的潜在作用。尽管人工智能在乳腺钼靶摄影和数字乳腺断层合成方面取得了重大进展,市售的计算机辅助检测(CAD系统)广泛用于乳腺癌筛查和检测,但它在乳腺磁共振成像(MRI)中的应用进展较慢。这种滞后主要归因于乳腺MRI检查本身的复杂性,以及大型、标注良好的公开可用乳腺MRI数据集的可用性更有限。尽管存在这些挑战,但随着乳腺MRI的使用和适应症不断扩大,对在乳腺MRI中实施人工智能的兴趣依然浓厚。本文探讨了人工智能在乳腺癌诊疗过程中在乳腺MRI中的应用,强调了其变革我们检测和管理乳腺癌方式的潜力。通过应对当前挑战并研究新兴的人工智能应用,我们旨在全面概述人工智能如何重塑乳腺MRI并改善患者的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/11d6428460ce/mrms-24-279-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/ff29b66a83ed/mrms-24-279-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/aada0b3397c2/mrms-24-279-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/1b1d043839ec/mrms-24-279-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/11d6428460ce/mrms-24-279-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/ff29b66a83ed/mrms-24-279-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/aada0b3397c2/mrms-24-279-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/1b1d043839ec/mrms-24-279-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eebd/12263444/11d6428460ce/mrms-24-279-g4.jpg

相似文献

[1]
Application of Machine Learning to Breast MR Imaging.

Magn Reson Med Sci. 2025-7-1

[2]
Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework.

Sci Rep. 2025-7-11

[3]
Adaptive Breast MRI Scanning Using AI.

Radiology. 2025-6

[4]
Cancer Detection in Breast MRI Screening via Explainable AI Anomaly Detection.

Radiology. 2025-7

[5]
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.

medRxiv. 2025-6-27

[6]
Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review.

Artif Intell Med. 2021-5

[7]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[8]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[9]
Artificial intelligence in inflammatory bowel disease endoscopy - a review of current evidence and a critical perspective on future challenges.

Therap Adv Gastroenterol. 2025-7-13

[10]
The future of Alzheimer's disease risk prediction: a systematic review.

Neurol Sci. 2025-4-12

本文引用的文献

[1]
Monitoring Over Time of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients Through an Ensemble Vision Transformers-Based Model.

Cancer Med. 2024-12

[2]
Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method.

Magn Reson Imaging. 2025-4

[3]
Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation.

Radiol Artif Intell. 2025-1

[4]
Predicting malignancy in breast lesions: enhancing accuracy with fine-tuned convolutional neural network models.

BMC Med Imaging. 2024-11-11

[5]
Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer.

Radiol Artif Intell. 2025-1

[6]
Early Detection of Breast Cancer in MRI Using AI.

Acad Radiol. 2025-3

[7]
Development of an MRI Radiomic Machine-Learning Model to Predict Triple-Negative Breast Cancer Based on Fibroglandular Tissue of the Contralateral Unaffected Breast in Breast Cancer Patients.

Cancers (Basel). 2024-10-14

[8]
Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI.

Sci Rep. 2024-9-17

[9]
Kaiser score diagnosis of breast MRI lesions: Factors associated with false-negative and false-positive results.

Eur J Radiol. 2024-9

[10]
Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.

Sci Rep. 2024-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索