Lo Gullo Roberto, van Veldhuizen Vivien, Roa Tina, Kapetas Panagiotis, Teuwen Jonas, Pinker Katja
Department of Radiology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA.
AI for Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Magn Reson Med Sci. 2025 Jul 1;24(3):279-299. doi: 10.2463/mrms.rev.2025-0021. Epub 2025 Jun 14.
The demand for breast imaging services continues to grow, driven by expanding indications in breast cancer diagnosis and treatment. This increasing demand underscores the potential role of artificial intelligence (AI) to enhance workflow efficiency as well as to further unlock the abundant imaging data to achieve improvements along the breast cancer pathway. Although AI has made significant advancements in mammography and digital breast tomosynthesis, with commercially available computer-aided detection (CAD systems) widely used for breast cancer screening and detection, its adoption in breast MRI has been slower. This lag is primarily attributed to the inherent complexity of breast MRI examinations and also hence the more limited availability of large, well-annotated publicly available breast MRI datasets. Despite these challenges, interest in AI implementation in breast MRI remains strong, fueled by the expanding use and indications for breast MRI. This article explores the implementation of AI in breast MRI across the breast cancer care pathway, highlighting its potential to revolutionize the way we detect and manage breast cancer. By addressing current challenges and examining emerging AI applications, we aim to provide a comprehensive overview of how AI is reshaping breast MRI and improving outcomes for patients.
在乳腺癌诊断和治疗的适应症不断扩大的推动下,对乳腺成像服务的需求持续增长。这种不断增长的需求凸显了人工智能(AI)在提高工作流程效率以及进一步挖掘丰富的成像数据以在乳腺癌诊疗过程中实现改善方面的潜在作用。尽管人工智能在乳腺钼靶摄影和数字乳腺断层合成方面取得了重大进展,市售的计算机辅助检测(CAD系统)广泛用于乳腺癌筛查和检测,但它在乳腺磁共振成像(MRI)中的应用进展较慢。这种滞后主要归因于乳腺MRI检查本身的复杂性,以及大型、标注良好的公开可用乳腺MRI数据集的可用性更有限。尽管存在这些挑战,但随着乳腺MRI的使用和适应症不断扩大,对在乳腺MRI中实施人工智能的兴趣依然浓厚。本文探讨了人工智能在乳腺癌诊疗过程中在乳腺MRI中的应用,强调了其变革我们检测和管理乳腺癌方式的潜力。通过应对当前挑战并研究新兴的人工智能应用,我们旨在全面概述人工智能如何重塑乳腺MRI并改善患者的治疗效果。
Magn Reson Med Sci. 2025-7-1
Radiology. 2025-6
Acc Chem Res. 2025-6-17
Neurol Sci. 2025-4-12