Suppr超能文献

基于横桥机制的骨骼肌本构方程。

Constitutive equations of skeletal muscle based on cross-bridge mechanism.

作者信息

Tözeren A

出版信息

Biophys J. 1985 Feb;47(2 Pt 1):225-36. doi: 10.1016/s0006-3495(85)83895-9.

Abstract

The statistical mechanics of cross-bridge action is considered in order to develop constitutive equations that express fiber tension as a function of degree of activation and time history of speed of contraction. The kinetic equation of A.F. Huxley (1) is generalized to apply to the partially activated state. The rate parameters of attachment and detachment, and cross-bridge compliance are assumed to be step functions of extension, x, with a finite number of discontinuities. This assumption enables integration of the kinetic equation and its moments with respect to x resulting in analytic equations from which x has been eliminated. When the constants in the rate parameters and the force function are chosen so that Hill's force-velocity relation and features of the transient kinetic and tension data can be fitted, the resulting cross-bridge mechanism is quite similar to the one proposed by Podolsky et al. (2). Because the derived constitutive equations simplify mathematical analysis, the influence of various cross-bridge parameters on the mechanical behavior of muscle fibers may be evaluated. For example (a) instantaneous elastic response (T0-T1) and the magnitude of rapid recovery (T2-T1) after a step length change can be adequately explained when the rate of attachment is assumed high for positive x. In that case T2 corresponds to the force generated by cross-bridges in the region of negative x. (b) Kinetic transients occur as a result of the jumps that exist in the distribution of attached cross-bridges during the isometric state. Because of the hyperbolic nature of the kinetic equation, these jumps propagate in the--x direction causing rapid changes in the speed of contraction. (c) When the number of actin sites available for attachment is assumed to depend on the degree of activation, computational results indicate that the speed of shortening is insensitive to the degree of activation at each relative load. (d) It is shown that during sinusoidal oscillation, the mean and second-order harmonics of the experimental force-time curve are strongly dependent on cross-bridge parameters. Therefore, significant information may be lost when the data is expanded into Fourier series and only the first term is considered.

摘要

为了建立本构方程,将纤维张力表示为激活程度和收缩速度时间历程的函数,我们考虑了横桥作用的统计力学。A.F.赫胥黎(1)的动力学方程被推广到适用于部分激活状态。附着和脱离的速率参数以及横桥顺应性被假定为伸长量x的阶跃函数,具有有限数量的不连续点。这一假设使得动力学方程及其关于x的矩能够积分,从而得到消除了x的解析方程。当速率参数和力函数中的常数被选择为能够拟合希尔力-速度关系以及瞬态动力学和张力数据的特征时,所得的横桥机制与波多尔斯基等人(2)提出的机制非常相似。由于导出的本构方程简化了数学分析,因此可以评估各种横桥参数对肌肉纤维力学行为的影响。例如:(a)当假定正向x时附着速率较高时,步长变化后的瞬时弹性响应(T0 - T1)和快速恢复的幅度(T2 - T1)可以得到充分解释。在这种情况下,T2对应于负向x区域中横桥产生的力。(b)动力学瞬态是由于等长状态下附着横桥分布中存在的跳跃而产生的。由于动力学方程的双曲线性质,这些跳跃在 -x 方向传播,导致收缩速度快速变化。(c)当假定可用于附着的肌动蛋白位点数量取决于激活程度时,计算结果表明在每个相对负荷下缩短速度对激活程度不敏感。(d)结果表明,在正弦振荡期间,实验力 - 时间曲线的均值和二次谐波强烈依赖于横桥参数。因此,当数据展开为傅里叶级数并仅考虑第一项时,可能会丢失重要信息。

相似文献

5
Kinetics of regeneration of cross-bridge power stroke in shortening muscle.缩短肌肉中横桥动力冲程的再生动力学。
Adv Exp Med Biol. 1993;332:691-700; discussion 700-1. doi: 10.1007/978-1-4615-2872-2_61.

本文引用的文献

1
The heat of activation and the heat of shortening in a muscle twitch.肌肉收缩时的活化热与缩短热。
Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195-211. doi: 10.1098/rspb.1949.0019.
2
An analysis of the mechanical components in frog's striated muscle.青蛙横纹肌中机械成分的分析。
J Physiol. 1958 Oct 31;143(3):515-40. doi: 10.1113/jphysiol.1958.sp006075.
4
The double array of filaments in cross-striated muscle.横纹肌中细丝的双阵列。
J Biophys Biochem Cytol. 1957 Sep 25;3(5):631-48. doi: 10.1083/jcb.3.5.631.
7
A model of cardiac muscle mechanics and energetics.心肌力学与能量学模型。
J Biomech. 1980;13(11):929-40. doi: 10.1016/0021-9290(80)90163-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验