Huang Xue-Ling, Xu Zhen-Hao, Qiu Jiang-Bing, Ou Xiao-Li, Yu Shuang, Zhang Hao-Yun, Huang Dan, Wu Si-Wei, Huang Yi-Tong, Zou Li-Gong, Yang Wei-Dong, Li Hong-Ye, Ou Lin-Jian, Li Da-Wei
Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
Environ Sci Technol. 2025 Jan 21;59(2):1112-1120. doi: 10.1021/acs.est.4c08647. Epub 2025 Jan 9.
Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater. Furthermore, the study noted a significant reduction in the synthesis of GTX4, GTX1, NEO, and GTX3 toxins in cells exposed to 50 and 200 μg/L of pyrene. Concurrently, exposure to pyrene resulted in marked declines in the growth and photosynthetic efficiency of . Proteomics analysis results showed an upregulation of proteins related to endocytosis, such as HSPA and Arf, while proteins associated with paralytic shellfish toxin (PST) synthesis, specifically SxtU and SxtH, showed a downregulation trend. In summary, the findings of this study preliminarily elucidate the molecular mechanisms underlying 's response to pyrene, reveal the impact of pyrene on PST synthesis, and suggest that holds significant potential for pyrene biodegradation.
芘是一种典型的多环芳烃,经常出现在水生环境中,并对人类和野生动物产生致命影响。本研究考察了芘对一种引发有害藻华的甲藻的影响,以及它们对芘的生物去除能力。在一项96小时的暴露实验中,[甲藻名称未给出]有效地将海水中芘的浓度降低到50、100和200微克/升,海水中的综合去除效率达到96%。此外,该研究指出,在暴露于50和200微克/升芘的[甲藻名称未给出]细胞中,GTX4、GTX1、NEO和GTX3毒素的合成显著减少。同时,芘的暴露导致[甲藻名称未给出]的生长和光合效率显著下降。蛋白质组学分析结果显示,与内吞作用相关的蛋白质(如HSPA和Arf)上调,而与麻痹性贝类毒素(PST)合成相关的蛋白质(特别是SxtU和SxtH)呈下调趋势。总之,本研究结果初步阐明了[甲藻名称未给出]对芘反应的分子机制,揭示了芘对PST合成的影响,并表明[甲藻名称未给出]在芘生物降解方面具有巨大潜力。