Yang Guizeng, Tao Yunlong, Cheng Qingqing, Liu Chuang, Zhang Binbin, Sun Xuehao, Yang Yahui, Lu Dandan, Yang Jian, Deng Lin-Long, Sun Lichao, Xu Hongxing, Xie Su-Yuan, Zhang Qingfeng
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China.
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
ACS Nano. 2025 Jan 21;19(2):2961-2974. doi: 10.1021/acsnano.4c17484. Epub 2025 Jan 9.
Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells. In a typical case, chiral Au@CuO nanostructures exhibit shell-dependent tunable CD signals in both asymmetry factors and band wavelengths. The shell-dependent CD was demonstrated experimentally by CD and single-particle spectroscopy and theoretically through numerical simulations. By deliberately controlling the geometry of the chiral core and the composition of the achiral shell, we show the versatility of our strategy for constructing chiral hybrid nanostructures with increasing architectural and compositional complexity as well as enhanced plasmonic chirality. Furthermore, the chiral Au@CuO nanostructure exhibits intriguing asymmetric color modulation. This work opens an advancing strategy and provides an important knowledge framework for the rational design of multifunctional chiral hybrid nanostructures toward emerging chirality-dependent applications.
具有迷人物理和化学性质的手性等离子体纳米材料在光子学、催化和传感等领域展现出新兴的手性依赖应用。在宽光谱范围内精确操纵等离子体手性的能力对于使手性纳米材料在多样复杂场景中的应用发挥着关键作用;然而,这仍是一个有待解决的挑战。在此,我们展示了一种策略,即通过构建具有定制壳层的核壳混合金属 - 半导体结构,显著增强手性纳米材料圆二色性(CD)光谱的可调谐性。在一个典型案例中,手性Au@CuO纳米结构在不对称因子和波段波长方面均表现出依赖于壳层的可调谐CD信号。通过CD和单粒子光谱实验证明了壳层依赖的CD,并通过数值模拟从理论上进行了验证。通过刻意控制手性核的几何形状和非手性壳的组成,我们展示了我们构建手性混合纳米结构策略的通用性,其结构和组成复杂性不断增加,等离子体手性也得到增强。此外,手性Au@CuO纳米结构表现出有趣的不对称颜色调制。这项工作开启了一种推进策略,并为合理设计多功能手性混合纳米结构以实现新兴的手性依赖应用提供了重要的知识框架。