Suppr超能文献

由入射通道驱动的消除和取代反应的原子动力学

Atomistic dynamics of elimination and substitution driven by entrance channel.

作者信息

Yang Li, Zhao Siwei, Wang Hongyi, Fu Gang, Zhen Wenqing, Bai Xiang, Zhang Jiaxu

机构信息

Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.

School of Food Engineering, Harbin University, Harbin 150086, People's Republic of China.

出版信息

J Chem Phys. 2025 Jan 14;162(2). doi: 10.1063/5.0245151.

Abstract

E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction. This unexpected finding of a pronounced contribution of direct reaction dynamics, even at a near-thermal energy, is in strong contrast to the complex-mediated indirect mechanism for the fluoride case that characterizes the low-energy ion-molecule reactions. The entrance channel structures are found to be crucial and the differences are attributed to subtle changes in the hydrogen-bonding interaction of the approaching reactants. This effect presents in E2/SN2 reactions of different bases and alkyl halides and might play a role in complex chemical networks and environments.

摘要

由于其立体专一性,E2消除反应和SN2取代反应在有机合成制备中至关重要。在此,揭示了氯乙烷与氢氧根离子的典型反应的原子动力学,其表现出与氟离子情况显著不同的特征。化学动力学模拟再现了实验反应速率,并表明对于氢氧根离子反应,通过直接消除机制进行的E2反应比SN2反应占主导。即使在接近热能的情况下,直接反应动力学的显著贡献这一意外发现与氟离子情况下表征低能离子-分子反应的复杂介导间接机制形成强烈对比。发现入口通道结构至关重要,差异归因于接近反应物的氢键相互作用的细微变化。这种效应存在于不同碱和卤代烷的E2/SN2反应中,可能在复杂的化学网络和环境中起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验