Suppr超能文献

将D-二聚体阈值纳入修订的Caprini风险分层以预测术前膝关节骨关节炎患者深静脉血栓形成风险

Integrating D-Dimer Thresholds into the Revised Caprini Risk Stratification to Predict Deep Vein Thrombosis Risk in Preoperative Knee Osteoarthritis Patients.

作者信息

Guo Yi-Feng, Zhang Dingding, Chen Yaping, Liu Weinan, Gao Na, Weng Xisheng, Lin Jin, Jin Jin, Qian Wenwei, Yang Xu, Zhang Yin-Ping, Huo Xiaopeng

机构信息

Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

School of Nursing, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.

出版信息

Clin Appl Thromb Hemost. 2025 Jan-Dec;31:10760296241311265. doi: 10.1177/10760296241311265.

Abstract

INTRODUCTION

Preoperative patients with knee osteoarthritis have a significantly increased risk of venous thromboembolism (VTE). While the Caprini risk assessment model offers some clinical guidance in predicting deep vein thrombosis (DVT), it has a relatively low predictive accuracy. Enhancing the model by integrating biomarkers, such as D-dimers, can potentially improve its accuracy. In this study, we explored the effectiveness of combining the Caprini risk model with D-dimer levels for individualized DVT risk assessment in patients with knee osteoarthritis.

MATERIALS AND METHODS

This retrospective cohort study included 1605 knee osteoarthritis patients scheduled for total knee arthroplasty from Peking Union Medical College Hospital, screened between January 2015 and December 2018. A revised Caprini risk stratification model was developed, and a predictive DVT model was developed based on this revised system. The sensitivity, specificity, and the area under the curve (AUC) were used to determine predictive effectiveness of the model.

RESULTS

In the revised Caprini risk stratification, the incidence of DVT increased with higher risk levels: 2.52% in the low-risk group (scores 0-2), 2.88% in the moderate-risk group (score 3), 6.47% in the high-risk group (score 4), and 9.09% in the highest-risk group (score ≥ 5). The incidence of DVT was 3.869-fold higher in the highest-risk group and 2.676-fold higher in the high-risk group compared to the low-risk group (p = 0.013 and p = 0.014, respectively). Combining the revised Caprini risk stratification with D-dimer level demonstrated an improved AUC of 0.792, compared to D-dimer level alone (AUC 0.774) and the revised Caprini model alone (AUC 0.598). Furthermore, applying specific D-dimer thresholds across the four Caprini risk stratifications outperformed the combination of the revised Caprini model and D-dimer level in terms of AUC, specificity, and reduction in unnecessary ultrasonography. Using the Youden index, the AUC for the threshold-based method was slightly higher (0.775 vs 0.754, p = 0.310), with significantly better specificity (76.8% vs 63.6%, p < 0.001) and a greater reduction in ultrasound use (74.1% vs 61.4%). At a sensitivity of 85.5%, the differences were modest but still favored the threshold-based approach. At a sensitivity of 100%, the specificity (36.0% vs 24.7%, p < 0.001) and ultrasound reduction (34.8% vs 23.9%) were significantly better.

CONCLUSION

The revised Caprini risk stratification improves preoperative DVT prediction in patients with knee osteoarthritis. Incorporating specific D-dimer thresholds into the four-level Caprini risk model enhances specificity and reduces unnecessary ultrasonography, outperforming both the use of individual indicators and the combination of the revised Caprini model with D-dimer level.

摘要

引言

膝关节骨关节炎的术前患者发生静脉血栓栓塞(VTE)的风险显著增加。虽然Caprini风险评估模型在预测深静脉血栓形成(DVT)方面提供了一些临床指导,但其预测准确性相对较低。通过整合生物标志物(如D-二聚体)来改进该模型可能会提高其准确性。在本研究中,我们探讨了将Caprini风险模型与D-二聚体水平相结合用于膝关节骨关节炎患者个体化DVT风险评估的有效性。

材料与方法

这项回顾性队列研究纳入了2015年1月至2018年12月期间在北京协和医院接受全膝关节置换术的1605例膝关节骨关节炎患者。开发了修订后的Caprini风险分层模型,并基于该修订系统开发了预测DVT的模型。使用敏感性、特异性和曲线下面积(AUC)来确定模型的预测有效性。

结果

在修订后的Caprini风险分层中,DVT的发生率随着风险水平的升高而增加:低风险组(评分0 - 2)为2.52%,中风险组(评分3)为2.88%,高风险组(评分4)为6.47%,最高风险组(评分≥5)为9.09%。与低风险组相比,最高风险组的DVT发生率高3.869倍,高风险组高2.676倍(p分别为0.013和0.014)。将修订后的Caprini风险分层与D-二聚体水平相结合,AUC为0.792,优于单独的D-二聚体水平(AUC 0.774)和单独的修订后Caprini模型(AUC 0.598)。此外,在四个Caprini风险分层中应用特定的D-二聚体阈值在AUC、特异性和减少不必要的超声检查方面优于修订后的Caprini模型与D-二聚体水平的组合。使用约登指数,基于阈值的方法的AUC略高(0.775对0.754,p = 0.310),特异性显著更好(76.8%对63.6%,p < 0.001),超声检查使用减少更多(74.1%对61.4%)。在敏感性为85.5%时,差异不大但仍有利于基于阈值的方法。在敏感性为100%时,特异性(36.0%对24.7%,p < 0.001)和超声检查减少(34.8%对23.9%)显著更好。

结论

修订后的Caprini风险分层改善了膝关节骨关节炎患者术前DVT预测。将特定的D-二聚体阈值纳入四级Caprini风险模型可提高特异性并减少不必要的超声检查,优于单独使用个体指标以及修订后的Caprini模型与D-二聚体水平的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bb5/11719442/663ebc561614/10.1177_10760296241311265-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验