Suppr超能文献

前额内侧皮质认知控制的分布式表征

Distributed Representations for Cognitive Control in Frontal Medial Cortex.

作者信息

Colin Thomas R, Ikink Iris, Holroyd Clay B

机构信息

Ghent University.

出版信息

J Cogn Neurosci. 2025 May 1;37(5):941-969. doi: 10.1162/jocn_a_02285.

Abstract

In natural and artificial neural networks, modularity and distributed structure afford complementary but competing benefits. The former allows for hierarchical representations that can flexibly recombine modules to address novel problems, whereas the latter can benefit from less constrained training, potentially uncovering fruitful statistical regularities. Here, we investigate these competing demands in the context of human sequential behavior. First, we explore this setting by comparing the properties of several recurrent neural network models. We find that explicit hierarchical structure by itself fails to provide a critical performance advantage when compared with a "flat" model that does not incorporate hierarchical structure. However, hierarchy appears to facilitate cognitive control processes that support nonroutine behaviors and behaviors that are carried out under computational stress. Second, we compare these models against fMRI data using representational similarity analysis. We find that a model that incorporates so-called wiring costs in the cost function, which produces a hierarchically organized gradient of representational structure across the hidden layer of the neural network, best accounts for fMRI data collected from human participants in a previous study [Holroyd, C. B., Ribas-Fernandes, J. J. F., Shahnazian, D., Silvetti, M., & Verguts, T., Human midcingulate cortex encodes distributed representations of task progress. Proceedings of the National Academy of Sciences, U.S.A., 115, 6398-6403, 2018]. The results reveal that the ACC encodes distributed representations of sequential task context along a rostro-caudal gradient of abstraction: Rostral ACC encodes relatively abstract and temporally extended patterns of activity compared with those encoded by caudal ACC. These results provide insight into the role of ACC in motivation and cognitive control.

摘要

在自然和人工神经网络中,模块化和分布式结构带来了互补但相互竞争的益处。前者允许进行分层表示,能够灵活地重新组合模块以解决新问题,而后者则受益于限制较少的训练,有可能揭示出丰富的统计规律。在此,我们在人类序列行为的背景下研究这些相互竞争的需求。首先,我们通过比较几种循环神经网络模型的属性来探索这种情况。我们发现,与不包含层次结构的“扁平”模型相比,明确的层次结构本身并不能提供关键的性能优势。然而,层次结构似乎有助于支持非常规行为和在计算压力下执行的行为的认知控制过程。其次,我们使用表征相似性分析将这些模型与功能磁共振成像(fMRI)数据进行比较。我们发现,在成本函数中纳入所谓布线成本的模型,该模型在神经网络的隐藏层产生分层组织的表征结构梯度,最能解释先前一项研究中从人类参与者收集的fMRI数据[霍罗伊德,C.B.,里巴斯 - 费尔南德斯,J.J.F.,沙纳齐安,D.,西尔韦蒂,M.,& 韦尔古茨,T.,人类前扣带回中部皮层编码任务进展的分布式表征。美国国家科学院院刊,115,6398 - 6403,2018]。结果表明,前扣带回皮层沿着抽象的前后梯度编码序列任务上下文的分布式表征:与尾侧前扣带回皮层编码的活动模式相比,头侧前扣带回皮层编码相对抽象且时间上扩展的活动模式。这些结果为前扣带回皮层在动机和认知控制中的作用提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验