Castro-Jiménez Camilo C, Saldarriaga-Molina Julio C, García Edwin F, Torres-Palma Ricardo A, Acelas Nancy
Facultad de Ingeniería, Escuela Ambiental, Universidad de Antioquia UdeA, Medellín, Colombia.
Facultad de Ciencias Exactas y Naturales, Instituto de Química, Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Universidad de Antioquia UdeA, Medellín, Colombia.
PLoS One. 2025 Jan 9;20(1):e0316487. doi: 10.1371/journal.pone.0316487. eCollection 2025.
In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.745 to 95.471 m2 g-1 and in the total pore volume from 0.154 to 0.211 cm3 g-1, which resulted in a significant AZT removal efficiency of 65% in distilled water after 60 min of treatment. In synthetic wastewater, the rate of AZT removal increased to 80%, in comparison, in a real effluent of a municipal wastewater treatment plant, an AZT removal of 56% was obtained. Kinetic studies revealed that the experimental data followed the pseudo-second-order model (R2: 0.993-0.999, APE: 0.07-1.30%, and Δq: 0.10-2.14%) suggesting that chemisorption is the limiting step in the adsorption using L-500. This finding aligns with FTIR analysis, which indicates that adsorption mechanisms involve π-π stacking, hydrogen bonding, and electrostatic interactions. The equilibrium data were analyzed using the nonlinear Langmuir, Freundlich, and Langmuir-Freundlich isotherms. The Langmuir-Freundlich model presented the best fitting (R2: 0.93, APE: 2.22%, and Δq: 0.06%) revealing numerous interactions and adsorption energies between AZT and L-500. This adsorbent showed a reduction of 19% in its AZT removal after four consecutive reuse cycles. In line with the circular economy principles, our study presents an interesting prospect for the reuse and valorization of WTS. This approach not only offers an effective adsorbent for AZT removal from water but also represents a significant step forward in advancing sustainable water treatment solutions within the framework of the circular economy.
在本研究中,我们利用饮用水处理污泥(WTS)通过干燥和煅烧过程制备吸附剂。然后评估这些吸附剂从水溶液中去除阿奇霉素(AZT)的能力。L-500吸附剂由饮用水处理厂低浊度条件下产生的WTS在500°C煅烧得到,其比表面积从70.745增加到95.471 m2 g-1,总孔体积从0.154增加到0.211 cm3 g-1,这使得在蒸馏水中处理60分钟后,AZT的去除效率显著达到65%。在合成废水中,AZT的去除率提高到80%,相比之下,在城市污水处理厂的实际流出物中,AZT的去除率为56%。动力学研究表明,实验数据符合准二级模型(R2:0.993 - 0.999,APE:0.07 - 1.30%,Δq:0.10 - 2.14%),这表明化学吸附是使用L-500进行吸附的限速步骤。这一发现与傅里叶变换红外光谱(FTIR)分析结果一致,该分析表明吸附机制涉及π-π堆积、氢键和静电相互作用。使用非线性朗缪尔、弗伦德利希和朗缪尔-弗伦德利希等温线对平衡数据进行分析。朗缪尔-弗伦德利希模型拟合效果最佳(R2:0.93,APE:2.22%,Δq:0.06%),揭示了AZT与L-500之间存在多种相互作用和吸附能。该吸附剂在连续四个重复使用周期后,其对AZT的去除率降低了19%。符合循环经济原则,我们的研究为WTS的再利用和增值提供了一个有趣的前景。这种方法不仅提供了一种从水中有效去除AZT的吸附剂,而且在循环经济框架内推进可持续水处理解决方案方面迈出了重要一步。