Ramos Raul, Pham Kim T, Prince Richard C, Leiser-Miller Leith B, Prasad Maneeshi S, Wang Xiaojie, Nordberg Rachel C, Bielajew Benjamin J, Hu Jerry C, Yamaga Kosuke, Oh Ji Won, Peng Tao, Datta Rupsa, Astrowskaja Aksana, Almet Axel A, Burns John T, Liu Yuchen, Guerrero-Juarez Christian Fernando, Tran Bryant Q, Chu Yi-Lin, Nguyen Anh M, Hsi Tsai-Ching, Lim Norman T-L, Schoeniger Sandra, Liu Ruiqi, Pai Yun-Ling, Vadivel Chella K, Ingleby Sandy, McKechnie Andrew E, van Breukelen Frank, Hoehn Kyle L, Rasweiler John J, Kohara Michinori, Loughry William J, Weldy Scott H, Cosper Raymond, Yang Chao-Chun, Lin Sung-Jan, Cooper Kimberly L, Santana Sharlene E, Bradley Jeffrey E, Kiebish Michael A, Digman Michelle, James David E, Merrill Amy E, Nie Qing, Schilling Thomas F, Astrowski Aliaksandr A, Potma Eric O, García-Castro Martín I, Athanasiou Kyriacos A, Behringer Richard R, Plikus Maksim V
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
Science. 2025 Jan 10;387(6730):eads9960. doi: 10.1126/science.ads9960.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis. Consequently, lipochondrocytes grew uniform lipid droplets that resisted systemic lipid surges and did not enlarge upon obesity. Lipochondrocytes also lacked lipid mobilization factors, which enabled exceptional vacuole stability and protected cartilage from shrinking upon starvation. Lipid droplets modulated lipocartilage biomechanics by decreasing the tissue's stiffness, strength, and resilience. Lipochondrocytes were found in multiple mammals, including humans, but not in nonmammalian tetrapods. Thus, analogous to bubble wrap, superstable lipid vacuoles confer skeletal tissue with cartilage-like properties without "packing foam-like" extracellular matrix.
传统上,软骨的大小、形状和生物力学特性由其大量的细胞外基质决定。相比之下,我们发现多种小鼠软骨由称为脂肪软骨细胞的脂质填充细胞组成。尽管脂肪软骨细胞与脂肪细胞相似,但在分子水平上有所不同,并且仅通过从头脂肪生成产生脂质。因此,脂肪软骨细胞生长出均匀的脂滴,这些脂滴能够抵抗全身脂质激增,并且在肥胖时不会增大。脂肪软骨细胞也缺乏脂质动员因子,这使得液泡具有非凡的稳定性,并保护软骨在饥饿时不会萎缩。脂滴通过降低组织的硬度、强度和弹性来调节脂肪软骨的生物力学。在包括人类在内的多种哺乳动物中都发现了脂肪软骨细胞,但在非哺乳类四足动物中未发现。因此,类似于气泡膜,超稳定的脂质液泡赋予骨骼组织类似软骨的特性,而无需“泡沫状”细胞外基质。