Wu Minghui, Tao Yiqian, Zeng Qilu, Pan Zhengyong, Zhang Han, Yin Zhiyan, Li Wenjian, Liu Yanxin, Li Xing, Qiu Zhongping
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China; Sichuan Environmental Protection Engineering Centre of Solid Waste Treatment & Disposal, Chengdu 610041, China.
Waste Manag. 2025 Feb 15;194:88-103. doi: 10.1016/j.wasman.2025.01.007. Epub 2025 Jan 8.
Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.72-45.03 %), while reducing chemical oxygen demand (COD) content (10.34-51.85 %) and ammonia nitrogen concentration (80.71-90.95 %) in the leachate. G4 also exhibited significantly higher degradation of cellulose and hemicellulose, achieving 0.99 and 1.94 times higher efficiency than CK, respectively. Microbial analysis revealed that LD + LT + DM reshaped microbial communities composition of SABL, with most of the introduced microorganisms (Enterobacter, Sphingobacterium, Streptomyces, etc.) successfully colonizing, and stimulating indigenous functional microbes associated with organic matter decomposition. Additionally, microbial interactions were strengthened in G4, accompanied by the higher abundance of 11 biomarkers and enzymes involved in lignocellulose degradation and ammonia nitrogen conversion. Overall, LD + LT + DM maximized MMI function by reconstructing synergistic core microbes. These findings highlight the superiority of LD + LT + DM in simultaneously regulating the microbial composition of lignocellulose-rich waste landfills, expediting MSW decomposition, improving leachate treatment, and mitigating odor emissions, offering valuable insights for efficient MSW management.
由于大量难降解的木质纤维素和渗滤液有机负荷,城市生活垃圾填埋场的稳定化过程常常会延长,从而带来环境负担。在此,将各种组装的多功能微生物接种物(MMIs)引入半好氧生物反应器填埋场(SABL),以研究生物强化的影响。与对照(CK)和其他MMIs处理(G1 - G3)相比,接种LD + LT + DM(G4)显著提高了挥发性固体降解率(9.72 - 45.03%),同时降低了渗滤液中的化学需氧量(COD)含量(10.34 - 51.85%)和氨氮浓度(80.71 - 90.95%)。G4还表现出纤维素和半纤维素的降解率显著更高,分别比CK高0.99倍和1.94倍。微生物分析表明,LD + LT + DM重塑了SABL的微生物群落组成,大部分引入的微生物(肠杆菌、鞘氨醇单胞菌、链霉菌等)成功定殖,并刺激了与有机物分解相关的本土功能微生物。此外,G4中的微生物相互作用得到加强,同时参与木质纤维素降解和氨氮转化的11种生物标志物和酶的丰度更高。总体而言,LD + LT + DM通过重建协同核心微生物使MMI功能最大化。这些发现突出了LD + LT + DM在同时调节富含木质纤维素的垃圾填埋场微生物组成、加速城市生活垃圾分解、改善渗滤液处理和减少气味排放方面的优势,为高效的城市生活垃圾管理提供了有价值的见解。